Unsupervised Post-processing of Word Vectors via Conceptor Negation

Tianlin Liu^{*}, Lyle Ungar[‡], João Sedoc[‡]

*Department of Computer Science and Electrical Engineering, Jacobs University Bremen, Bremen, Germany. [‡]Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.

t.liu@jacobs-university.de, {ungar,joao}@cis.upenn.edu

Abstract

To enrich the semantic captured by word vectors, we introduce a novel word vector postprocessing technique based on *matrix conceptors*, a family of regularized identity maps. More concretely, we propose to use conceptors to suppress those latent features of word vectors having high variances. The proposed method is purely unsupervised: it does not rely on any corpus or external linguistic database.

Post-processing word vectors with Conceptor Negation

Input: (i) $\{v_w \in \mathbb{R}^n : w \in V\}$: word vectors of a vocabulary V;

- (ii) $\alpha \in \mathbb{R}$: a hyper-parameter.

Unsupervised word vector post-processing

<u>Goal</u>: Enhance semantic regularities word vectors' in a lightweight fashion. <u>Method</u>: Use spectral-decomposition methods akin to SVD and PCA. Relevant work: all-but-the-top (ABTT) method [1].

Input: (i) $\{v_w \in \mathbb{R}^n : w \in V\}$: word vectors with a vocabulary V;

(ii) *d*: the number of PCs to be removed.

Step 1: Center the word vectors: Let $\bar{v}_w \coloneqq v_w - \mu$ for all $w \in V$, where μ is the mean of the input word vectors.

Step 2: Compute the first d PCs $\{u_i \in \mathbb{R}^n\}_{i \in [d]}$ of the column-wisely stacked centered word vectors $[\bar{v}_w]_{w \in V} \in \mathbb{R}^{n \times |V|}$ via a PCA. **Step 3:** Process the word vectors: $\tilde{v}_w^{\text{ABTT}} \coloneqq \bar{v}_w - \sum_{i=1}^d u_i^\top u_i \bar{v}_w, \forall w \in V.$ **Output:** $\{\tilde{v}_w^{\mathsf{ABTT}}, w \in V\}.$

Algorithm 1: The all-but-the-top (ABTT) algorithm for word vector post-processing.

Downside of ABTT: ABTT either **completely removes** the a latent feature (taking form as a PC of the word vectors), or **keeps it intact**.

Our improvement over ABTT: **softly** gate away variances explained by the leading PCs of word vectors using conceptor matrices [2].

Conceptors

Step 1. Compute the conceptor C from word vectors: $C = R(R + \alpha^{-2}\mathbf{I})^{-1}$, where R is estimated by $\frac{1}{|V|} \sum_{w} v_{w} v_{w}^{\dagger}$ **Step 2.** Compute $\neg C \coloneqq \mathbf{I} - C$ **Step 3.** Process the word vectors: $\tilde{v}_w^{CN} \coloneqq \neg Cv_w, \forall w \in V$ Output: $\{\tilde{v}_w^{CN} : w \in V\}.$

Algorithm 2: The conceptor negation (CN) algorithm for word vector post-processing.

Experiments

Word Similarity

Post-processing results (Spearman's rank correlation coefficient × 100) averaged across seven word similarity benchmarks in [1].

Figure 1: (a): The red conceptor characterizes linear subspace occupied by point clouds. (b): NOT operation on conceptors.

The conceptor, C, is a soft projection matrix on the linear subspace where the samples of xlie. From a set of *n*-dimensional points $\{x_i\}_{i \in I}$, C is defined as:

$$\underset{C}{\operatorname{argmin}} \frac{1}{|I|} \sum_{i \in I} ||x_i - Cx_i||^2 + \alpha^{-2} ||C||_{\mathsf{F}}^2 \tag{1}$$

where α is a hyperparameter and $|| \cdot ||_{F}$ is the Frobenius norm, |I| is the cardinality of I. This optimization problem has a closed-form solution

$$C = R(R + \alpha^{-2} \mathbf{I})^{-1} \quad \text{where} \quad R = \frac{1}{|I|} X X^{\top}$$
(2)

where X is a matrix with x_i as columns, and I is the $n \times n$ identity matrix. Relationship between singular values of R and C:

Semantic Textual Similarity

		WC	RD2V	EC	GLOVE			
	-	orig.	ABTT	CN	orig.	ABTT	CN	
STS 2	2012	57.22	57.67	54.31	48.27	54.06	54.38	
STS 2	2013	56.81	57.98	59.17	44.83	51.71	55.51	
STS 2	2014	62.89.	63.30	66.22	51.11	59.23	62.66	
STS 2	2015	62.74	63.35	67.15	47.23	57.29	63.74	
S	SICK	70.10	70.20	72.71	65.14	67.85	66.42	

Post-processing results (\times 100) on the semantic textual similarity tasks.

Concept Categorization

WORD2VEC GLOVE orig. ABTT CN. orig. ABTT CN ESSLLI 100.0 100.0 100.0 100.0 100.0 100.0 AP 87.28 88.3 89.31 86.43 87.19 90.95 BM 58.15 59.24 60.19 65.34 67.35 67.63

Purity (\times 100) of the clusters in concept categorization task with fixed centroids.

Neural Belief Tracker

A deep neural network based dialogue state tracking system [3].

	WC	DRD2V	EC	GLOVE			
	orig.	ABTT	CN.	orig.	ABTT	CN	
Food	48.6	84.7	78.5	86.4	83.7	88.8	
Price range	90.2	88.1	92.2	91.0	93.9	94.7	
Area	83.1	82.4	86.1	93.5	94.9	93.7	
Average	74.0	85.1	85.6	90.3	90.8	92.4	

Boolean logic on conceptor C:

 $\neg C \coloneqq I - C.$

The negated conceptor, $\neg C$, softly projects the data onto a linear subspace that can be roughly understood as the orthogonal complement of the subspace characterized by C.

References

- [1] Mu, J. and Viswanath, P. All-but-the-top: Simple and effective postprocessing for word representations. In International Conference on Learning Representations, 2018.
- [2] Jaeger, H. 2014. Controlling recurrent neural networks by conceptors. Technical report, Jacobs University Bremen.
- [3] Mrkšić, N and Vulić, I. Fully statistical neural belief tracking. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 108113. Association for Computational Linguistics.

Full paper

Codes

The 33rd AAAI Conference on Artificial Intelligence (AAAI), Honolulu, Hawaii, USA, 2019