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1 The Reinforcement Learning Problem

Exercise 1.1. Self-Play. Suppose, instead of playing against a random opponent, the reinforce-
ment learning algorithm described above played against itself, with both sides learning. What
do you think would happen in this case? Would it learn a different policy for selecting moves?
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Solution. I would expect that after several games, both sides learn a set of moves, and it might
be the case that they just keep playing that set of moves over and over. Since there is no new
training data come in, the value function may stop updating.

�

Exercise 1.2. Symmetries. Many tic-tac-toe positions appear different but are really the same
because of symmetries. How might we amend the learning process described above to take
advantage of this? In what ways would this change improve the learning process? Now think
again. Suppose the opponent did not take advantage of symmetries. In that case, should we?
Is it true, then, that symmetrically equivalent positions should necessarily have the same value?

Solution. Exploiting symmetry can reduce the number of states we needed to characterize the
game. In this case, we do not have to keep so many value numbers. I think we should take
advantage of symmetries weather or not our opponent do. I would expect symmetrically equiv-
alent positions have the same value, because the probability of winning/losing is the same for
symmetric states.

�

Exercise 1.3. Greedy Play. Suppose the reinforcement learning player was greedy, that is, it
always played the move that brought it to the position that it rated the best. Might it learn to
play better, or worse, than a nongreedy player? What problems might occur?

Solution. I would expect the the agent will learn to play worse than a non-greedy player. Sup-
pose the agent always playing greedily, the agent chooses “good” moves according to its own
experience. Since its experience might be partial or limited, the greedy choice might exclude
some better moves, which could be selected if there are exploratory moves.

�

Exercise 1.4. Learning from Exploration. Suppose learning updates occurred after all moves,
including exploratory moves. If the step-size parameter is appropriately reduced over time (but
not the tendency to explore), then the state values would converge to a set of probabilities.
What are the two sets of probabilities computed when we do, and when we do not, learn from
exploratory moves? Assuming that we do continue to make exploratory moves, which set of
probabilities might be better to learn? Which would result in more wins?
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Solution. The set of probabilities when we do not learn from exploratory moves is the value we
can achieve by performing (our assumed) optimal move. The set of probabilities when we do
learn from exploratory moves is the value we can achieve by performing (our assumed) optimal
move corrupted by some random moves. I would expect the former is better and I will imagine
it results more wins. We are interested to learn a policy which tells us what action to execute if
a state is given. The exploratory move, however, is out of our interests: exploratory moves are
just some random moves, which are not related to the state that the agent stands in. �

Exercise 1.5. Other Improvements. Can you think of other ways to improve the reinforcement
learning player? Can you think of any better way to solve the tic-tac-toe problem as posed?

Solution. For this 3-by-3 game, the state space is actually very small. It is possible to brute-force
to specify the optimal moves for each and every board states. �

2 Multi-arm Bandits

Exercise 2.1. In the comparison shown in Figure 2.2, which method will perform best in the
long run in terms of cumulative reward and cumulative probability of selecting the best action?
How much better will it be? Express your answer quantitatively.

Solution. I would expect that the ε = 0.01 method will perform best in the long run in terms of
cumulative reward as well as cumulative probability of selecting the best action.

In terms of cumulative reward: In the long run, the ε = 0.1 method will achieve the reward
of (1.55 + δ), where δ is a noise with 0 mean and 1 variance, with probability of 0.9; the
ε = 0.01 method will achieve the reward of (1.55 + δ), where δ is a noise with 0 mean and 1
variance, with probability of 0.99. Hence ε = 0.1 and ε = 0.01 will achieve cumulative reward of
0.9× 1.55 = 1.395 and 0.99× 1.55 = 1.5345 respectively.

In terms of cumulative probability of selecting the best action: In the long run, the ε = 0.1
method will select the optimal action with probability 0.9; the ε = 0.01 method will select the
optimal action with probability 0.99.

�

Exercise 2.2. If the step-size parameters, αn, are not constant, then the estimate Qn is a
weighted average of previously received rewards with a weighting different from that given by
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(2.6). What is the weighting on each prior reward for the general case, analogous to (2.6), in
terms of the sequence of step-size parameters?

Solution.

Qn+1 := Qn + αn [Rn −Qn]

= Qn + αnRn.− αnQn
= αnRn + (1− αn) [αn−1Rn−1 + (1− αn−1)Qn−1]

= Πn
i=1(1− αi)Q1 +

n−1∑
1

αiΠ
n
j=i+1(1− αj)Ri + αnRn.

�

Exercise 2.3. (programming) Design and conduct an experiment to demonstrate the diffi-
culties that sample-average methods have for nonstationary problems. Use a modified version of
the 10-armed testbed in which all the q∗(a) start out equal and then take independent random
walks. Prepare plots like Figure 2.2 for an action-value method using sample averages, incre-
mentally computed by α = 1

n , and another n action-value method using a constant step-size
parameter, α = 0.1. Use ε = 0.1 and, if necessary, runs longer than 1000 steps.

Solution. Please see exer2.3.py. �

Exercise 2.4. The results shown in Figure 2.3 should be quite reliable because they are averages
over 2000 individual, randomly chosen 10-armed bandit tasks. Why, then, are there oscillations
and spikes in the early part of the curve for the optimistic method? In other words, what might
make this method perform particularly better or worse, on average, on particular early steps?

Solution. The gap between different rewards is much larger in the early steps, which encourages
the agent selects particular better or worse, on average, in early steps.

�

Exercise 2.5. In Figure 2.4 the UCB algorithm shows a distinct spike in performance on the
11th step. Why is this? Note that for your answer to be fully satisfactory it must explain both
why the reward increases on the 11th step and why it decreases on the subsequent steps. Hint:
if c = 1, then the spike is much less prominent.
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Solution. • The initial plateau: This is due to the fact that actions are essentially selected
randomly in early steps. Large c suppresses the action to select the action greedily. This
makes the rewards low in early steps.

• The spike: once a high-reward is reached by some almost randomly selected actions, the
average reward for that step increases significantly.

• Decrease on subsequent move: In the subsequent moves, C suppresses the agent keep
selecting the high reward action, and therefore the reward is lowered. But because the Q for
high-reward action has already been updated, there is still a reasonable chance to select that
action. Hence the reward is not as low as before the spike.

�

3 Finite Markov Decision Processes

Exercise 3.1. Devise three example tasks of your own that fit into the reinforcement learning
framework, identifying for each its states, actions, and rewards. Make the three examples as
different from each other as possible. The framework is abstract and flexible and can be applied
in many different ways. Stretch its limits in some way in at least one of your examples.

Solution. • One the example is soccer-playing robots. Consider the simple case that a single
robot is on the court. The states of the robot might be the grid position that it stands in.
The action might be move north/south/west/east. The action might be (i) dribbling the ball
and (ii) shooting the ball. The rewards might be 1 for each score and a small negative reward
for each dribble-move.

• The second example is still the soccer playing robots. The action and rewards are the same as
the previous example. What makes this example different is that, the states of the robot are
not physical states, but a vector of probability distribution, which characterizes its prediction
of possible future moves. This kind of states are used in OOM(Observable Operator Model)
and PSR(Predictive State Representation) literatures.

• The third example is solving Jigsaw puzzles. The states might be the arrangements of all
pieces. The actions might be (i)exchange the position of two pieces and (ii) do nothing.
Suppose if two pieces are put next to each other correctly, then they are locked together
automatically by some oracle. The awards are (i) a small negative reward, say, 0.01, for each
position exchange, (ii) a small positive reward, say, 0.1, for each “lock”, and (iii) a large
positive reward, say, 5, for completely solving the Jigsaw puzzles.

�
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Exercise 3.2. Is the reinforcement learning framework adequate to usefully represent all goal-
directed learning tasks? Can you think of any clear exceptions?

Solution. One instance RI framework may fail is the case when reward hypothesis (see section
3.2 of the book) is violated. Particularly, reward hypothesis fails to be true if we need a reward
vector, instead of a reward scalar. Each entry of the reward vector might represent related but
different goals that we might want to achieve. In this case, to maximize the reward, we have to
do some trade-off between different goals, but the RL framework only considers a single goal. �

Exercise 3.3. Consider the problem of driving. You could define the actions in terms of the
accelerator, steering wheel, and brake, that is, where your body meets the machine. Or you
could define them farther out?say, where the rubber meets the road, considering your actions
to be tire torques. Or you could define them farther in?say, where your brain meets your body,
the actions being muscle twitches to control your limbs. Or you could go to a really high level
and say that your actions are your choices of where to drive. What is the right level, the right
place to draw the line between agent and environment? On what basis is one location of the
line to be preferred over another? Is there any fundamental reason for preferring one location
over another, or is it a free choice?

Solution. I think the location depends on the goal of the given task. For instance, if the task
aims to train human to make better decision on braking or accelerating given the current traffic
on the road, then the action at the level of “brain meets body” seems appropriate. If the task
aims to train human to make better traveling plan, the actions at the level of “choices of where
to drive” seems appropriate. If the tasks aims to assess and optimize the quality of the rubber,
the actions where “rubber meets the road” seems appropriate. �

Exercise 3.4. Suppose you treated pole-balancing as an episodic task but also used discounting,
with all rewards zero except for −1 upon failure. What then would the return be at each time?
How does this return differ from that in the discounted, continuing formulation of this task?

Solution. The return will be−γk as before, where k is a time step in an episode. In the continuing
formulation, it is helpful to have discounting factor: it prevents the return from blowing up to
infinity. However, in episodic formulation, as we do not need to worry about infinite return,
using discounting factor in this particular episodic setting seems meaningless: as our goal is
to make the balance lasts as long as possible, we should make the reward of each additional
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time-step equally valuable, or even make each additional time-step that the balance lasts more
valuable than its prior one, but certainly we do not want to discount the value of an additional
time step– it discourages the balance-time to last longer. �

Exercise 3.5. Imagine that you are designing a robot to run a maze. You decide to give it a
reward of +1 for escaping from the maze and a reward of zero at all other times. The task seems
to break down naturally into episodes–the successive runs through the maze–so you decide to
treat it as an episodic task, where the goal is to maximize expected total reward (3.1). After
running the learning agent for a while, you find that it is showing no improvement in escaping
from the maze. What is going wrong? Have you effectively communicated to the agent what
you want it to achieve?

Solution. The communication is not effective. We want to train the agent to escape from the
maze as quick as possible, but the agent understand it in a way that, as long as it can escape
from the maze, it does not matter how long it takes to escape. To effectively communicate what
we want, we need to add a small negative reward for each step the agent moves. �

Exercise 3.6. Broken Vision System. Imagine that you are a vision system. When you are
first turned on for the day, an image floods into your camera. You can see lots of things, but
not all things. You can’t see objects that are occluded, and of course you can’t see objects that
are behind you. After seeing that first scene, do you have access to the Markov state of the
environment? Suppose your camera was broken that day and you received no images at all, all
day. Would you have access to the Markov state then?

Solution. After seeing that first scene, I do not have access to the Markov state of the environ-
ment. Markov state includes everything to predict the immediate future, but this certainly is
not the case– I can not see the objects behind me, and the object behind me, say, a car which
about to run into the objects in front of me, may have an impact on the scene I would see in
the immediate future.

Suppose my camera was broken for a whole day, certainly I do not have access to Markov state.
The information I have is simply not enough to predict the future. �

Exercise 3.7. What is the Bellman equation for action values, that is, for qπ? It must give
the action value qπ(s, a) in terms of the action values, qπ(s′, a′), of possible successors to the
state?action pair (s, a). As a hint, the backup diagram corresponding to this equation is given
in Figure 3.4 (right). Show the sequence of equations analogous to (3.12), but for action values.
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Solution. One direct corollary of Conditional Expectation Theorem is that, informally, we have

E[X | info ] =
∑
i

E[X | info, Fi]P(Fi | info ).

http://www.stat.yale.edu/~pollard/Courses/600.spring08/Handouts/elem.

conditioning.pdf

Before finding out what is qπ(s′, a′), first we take a closer look at how vπ(s) is deducted in the
text.

vπ(s) := Eπ [Gt | St = s]

= Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s

]

= Eπ

[
Rt+1 + γ

∞∑
k=0

γkRt+k+1 | St = s

]

= Eπ [Rt+1 | St = s]︸ ︷︷ ︸
Part 1

+ Eπ

[
γ

∞∑
k=0

γkRt+k+1 | St = s

]
︸ ︷︷ ︸

Part 2

Part 1 := Eπ [Rt+1 | St = s]

=
∑
a

Eπ [Rt+1 | St = s,At = a] P(at = a | St = s)︸ ︷︷ ︸
π(a | s)

=
∑
a

π(a | s)
∑
r

rP(Rt+1 = r | St = s,At = a)

=
∑
a

π(a | s)
∑
s′,r

rp(r, s′ | s, a)

Part 2 := Eπ

γ
∞∑
k=0

γkRt+k+1︸ ︷︷ ︸
:=B

| St = s


=
∑
a

∑
s′

Eπ
[
B | St = s,At = a, St+1 = s′

]︸ ︷︷ ︸
vπ(s′)

π(a | s)P(St+1 = s′ | St = s,At = a)

=
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)vπ(s′)

8
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Part 1 + Part 2 =
∑
a

π(a | s)
∑
s′,r

p(s′, r | s, a)
[
r + γvπ(s′)

]
,∀s ∈ S

as desired.

Now, using the exactly the same idea

qπ(s, a) := Eπ [Gt | St = s,At = a]

= Eπ

[ ∞∑
k=0

γkRt+k+1 | St = s,At = a

]

= E

[
Rt+1 + γ

∞∑
k=0

γkRt+k+2|St = s,At = a

]

= E [Rt+1|St = s,At = a]︸ ︷︷ ︸
Part 1

+ E

[
γ
∞∑
k=0

γkRt+k+2|St = s,At = a

]
︸ ︷︷ ︸

Part 2

Part 1 := E [Rt+1|St = s,At = a]

=
∑
s′,r

rp(s′, r|s, a)

Part 2 := E

γ
∞∑
k=0

γkRt+k+2︸ ︷︷ ︸
:=B

|St = s,At = a


=
∑
s′

E
[
B|St = s,At = a, St+1 = s′

]
P(St+1 = s′ | St = s,At = a)

=
∑
s′

∑
a′

E
[
B|St = s,At = a, St+1 = s′, At+1 = a′

]︸ ︷︷ ︸
γqπ(s′,a′)

p(s′|s, a) p(a′ | s′)︸ ︷︷ ︸
π(a′ | s′)

=
∑
s′

p(s′|s, a)
∑
a′

γqπ(s′, a′) π(a′ | s′)

=
∑
s′,r

p(s′, r|s, a)
∑
a′

γqπ(s′, a′) π(a′ | s′)

qπ(s, a) = Part 1 + Part 2 =
∑
s′,r

p(s′, r | s, a)

[
r + γ

∑
a′

qπ(s′, a′)π(a′|s′)

]

�
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Exercise 3.8. The Bellman equation (3.12) must hold for each state for the value function vπ
shown in Figure 3.5 (right). As an example, show numerically that this equation holds for the
center state, valued at +0.7, with respect to its four neighboring states, valued at +2.3, +0.4,
-0.4, and +0.7. (These numbers are accurate only to one decimal place.)

Solution. It is easy to read out the values in (3.12) from the Figure 3.5: π(a|s) = 0.25 for all a,
γ = 0.9, r = 0, p(s′|s, a) = 0.25 for all a. Consequently,

0.25× 0.9× (2.3 + 0.4− 0.4 + 0.7) ≈ 0.7.

�

Exercise 3.9. In the gridworld example, rewards are positive for goals, negative for running into
the edge of the world, and zero the rest of the time. Are the signs of these rewards important, or
only the intervals between them? Prove, using (3.2), that adding a constant c to all the rewards
adds a constant, vc, to the values of all states, and thus does not affect the relative values of
any states under any policies. What is vc in terms of c and γ?

Solution. The signs matter in episodic tasks, as we will see in exercise 3.10. However, for
continuing task, signs do not matter– too see this, it is enough to prove the claim in this
question.

Recall
Gt = Rt+1 + γ(Rt+2) + γ2(Rt+3) + · · ·

and
Vπ(s) = Eπ[Gt|St = s].

Let C be the constant we add for each reward,

G̃t = Rt+1 + γ(Rt+2 + C) + γ2(Rt+3 + C) + · · ·

=

∞∑
k=0

γk(Rt+k+1 + C)

=
∞∑
k=0

γkRt+k+1︸ ︷︷ ︸
Gt

+
∞∑
k=0

γkC

and

Ṽπ(s) = Eπ[Gt +
∞∑
k=0

γkC|St = s] = Vπ(s) +
∞∑
k=0

γkC = Vπ(s) +
C

1− γ︸ ︷︷ ︸
:=Vc

.
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�

Exercise 3.10. Now consider adding a constant c to all the rewards in an episodic task, such
as maze running. Would this have any effect, or would it leave the task unchanged as in the
continuing task above? Why or why not? Give an example.

Solution. This will change the task. Consider the task of escaping from a maze. To accomplish
the task, it is reasonable to assign a big positive reward, say, 10, for successfully escaping from
the maze, and a small negative value, say, −0.1, for each step the agent moves. Adding a constant
1 to both 5 and -0.1, then there is a problem – the agent will never escape from the maze, since
it wants to stay as long as it can, to earn more positive reward by hovering around. �

Exercise 3.11. The value of a state depends on the values of the actions possible in that state
and on how likely each action is to be taken under the current policy. We can think of this in
terms of a small backup diagram rooted at the state and considering each possible action.:

Give the equation corresponding to this intuition and diagram for the value at the root node,
vπ(s), in terms of the value at the expected leaf node, qπ(s, a), given St = s. This equation should
include an expectation conditioned on following the policy, π. Then give a second equation in
which the expected value is written out explicitly in terms of π(a|s) such that no expected value
notation appears in the equation.

Solution. First equation:

Vπ = Eπ[Gt | St = s]

=
∑
a

Eπ[Gt | St = s,At = a]P[At = a | St = s].

Second equation follows from the first one:

Vπ =
∑
a

qπ(s, a)π(a|s).

11
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�

Exercise 3.12. The value of an action, qπ(s, a), depends on the expected next reward and the
expected sum of the remaining rewards. Again we can think of this in terms of a small backup
diagram, this one rooted at an action (state?action pair) and branching to the possible next
states:

Give the equation corresponding to this intuition and diagram for the action value, qπ(s, a), in
terms of the expected next reward, Rt+1, and the expected next state value, vπ(St+1), given
that St = s and At = a. This equation should include an expectation but not one conditioned
conditioned on following the policy. Then give a second equation, writing out the expected value
explicitly in terms of p(s′, r|s, a) defined by (3.6), such that no expected value notation appears
in the equation.

Solution. First equation:

qπ(s, a) = Eπ[Gt | St = s,At = a]

=
∑
s′

Eπ[Gt | St = s,At = a, St+1 = s′]P[St+1 = s′ | St = s,At = a]

Second equation follows from the first one:

qπ(s, a) =
∑
s′

Eπ[Gt | St+1 = s′]P[St+1 = s′ | St = s,At = a]

=
∑
s′

Eπ[Rt+1 + γGt+1 | St = s,At = a, St+1 = s′]P[St+1 = s′ | St = s,At = a]

=
∑
s′,r

r + γ Eπ[Gt+1 | St+1 = s′]︸ ︷︷ ︸
vπ(s′)

 p(s′, r|s, a)

=
∑
s′,r

[
r + γvπ(s′)

]
p(s′, r|s, a)

12
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�

Exercise 3.13. Draw or describe the optimal state-value function for the golf example.

Solution. I would expect the contour graph of optimal state-value function is looks similar as
the lower figure of Figure 3.6, except the contour circle for -1 is larger– it should covers the
whole green.

The reasoning is that, suppose we stand in anywhere outside of the green, then the optimal
policy is to hit the ball into the green using driver, and then from the green we hit the ball into
the hole using putter. Hence, if the location is outside of the green, the contour graph is exactly
the same as q∗(s, driver). Now suppose we stand inside of green, unlike the case of q∗(s, driver),
we do not commit ourself on first using the driver – we are free to use putter in this case, and
one stroke suffices to put the ball into the hole. Hence, inside of the green, the value is 1. �

Exercise 3.14. Draw or describe the contours of the optimal action-value function for putting,
q∗(s, putter), for the golf example.

Solution. Suppose we stand in the green, and we commit ourself on first hitting the ball with
a putter, then one stroke is enough – value for the whole green is -1. Now suppose we stand
outside of the green, and particular suppose we stand in the sand. Then committing ourself first
hitting the ball with a putter, the first hit will result nothing, but subsequently we can use a
driver and then another putter. So the value for the sand will be −3. Suppose we are further
out, then the value will not be lower than that of vputter. In this case, we commit to use the
putter for the first hit, and then we can use as many as drivers as it is needed to reach the green,
and another putter to put the ball into the hole.

�

Exercise 3.15. Give the Bellman equation for q∗ for the recycling robot.

Solution.

q∗(h, s) = p(h | h, s)︸ ︷︷ ︸
α

r(h, s, h)︸ ︷︷ ︸
rsearch

+γmax
a′

q∗(h, a
′)

+ p(l | h, s)︸ ︷︷ ︸
1−α

r(h, s, l)︸ ︷︷ ︸
rsearch

+γmax
a′

q∗(l, a
′)


= rsearch + γ ×

[
α×max

a′
q∗(h, a

′) + (1− α)×max
a′

q∗(l, a
′)

]
.
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q∗(h,w) = p(h | h,w)︸ ︷︷ ︸
1

r(h,w, h)︸ ︷︷ ︸
rwait

+γmax
a′

q∗(h, a
′)

+ p(l | h,w)︸ ︷︷ ︸
0

r(h,w, l)︸ ︷︷ ︸
rwait

+γmax
a′

q∗(l, a
′)


= rwait + γ ×

[
max
a′

q∗(h, a
′)

]
.

q∗(l, s) = p(h | l, s)︸ ︷︷ ︸
1−β

r(l, s, h)︸ ︷︷ ︸
−3

+γmax
a′

q∗(h, a
′)

+ p(l | l, s)︸ ︷︷ ︸
β

r(l, s, l)︸ ︷︷ ︸
rsearch

+γmax
a′

q∗(l, a
′)


= (1− β)

[
−3 + γmax

a′
q∗(h, a

′)

]
+ β

[
rsearch + γmax

a′
q∗(l, a

′)

]
.

q∗(l, w) = p(h | l, w)︸ ︷︷ ︸
0

r(l, w, h)︸ ︷︷ ︸
rwait

+γmax
a′

q∗(h, a
′)

+ p(l | l, w)︸ ︷︷ ︸
1

r(l, w, l)︸ ︷︷ ︸
rwait

+γmax
a′

q∗(l, a
′)


= rwait + γ ×

[
max
a′

q∗(l, a
′)

]
.

q∗(l, r) = p(h | l, r)︸ ︷︷ ︸
1

r(l, r, h)︸ ︷︷ ︸
0

+γmax
a′

q∗(h, a
′)

+ p(l | l, r)︸ ︷︷ ︸
0

r(l, r, l)︸ ︷︷ ︸
0

+γmax
a′

q∗(l, a
′)


= γ ×

[
max
a′

q∗(h, a
′)

]
.

�

Exercise 3.16. Figure 3.8 gives the optimal value of the best state of the gridworld as 24.4,
to one decimal place. Use your knowledge of the optimal policy and (3.2) to express this value
symbolically, and then to compute it to three decimal places.

Solution. By definition,

v∗(s) = max
π

vπ(s)

= max
π

E [Gt | St = s] .

14
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It is easy to see that the optimal policy is do anything → go up → go up → go up → go up.
Under this policy π∗,

v∗(s) = Eπ∗ [Gt | St = s]

=

∞∑
k=0

γkEπ∗ [Rt+k+1 | St = s]

=

∞∑
j=0

γ5j

=
10

1− γ5

=
10

1− 0.95

≈ 24.419

�

4 Dynamic Programming

Exercise 4.1. In Example 4.1, if π is the equiprobable random policy, what is qπ(11, down)?
What is qπ(7,down)?

Solution. Suppose we commit ourselves on going down from the position 11. Then we get a −1
reward deterministically, and the game is over (episode ends). Hence qπ(11, down) = −1.

Now suppose we commit ourselves on going down from position 7.

qπ(7, down) = Eπ[Gt | St = s,At = a]

= Rt + γ︸︷︷︸
1

Eπ[Gt+1 | St+1 = s′]︸ ︷︷ ︸
v(11)

= −1− 14

= −15.

�
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Exercise 4.2. In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14, and 15,
respectively. Assume that the transitions from the original states are unchanged. What, then,
is vπ(15) for the equiprobable random policy? Now suppose the dynamics of state 13 are also
changed, such that action down from state 13 takes the agent to the new state 15. What is
vπ(15) for the equiprobable random policy in this case?

Solution. Assume the transitions from the original states are unchanged.

vπ(15) =
∑
a

π(a|s)︸ ︷︷ ︸
0.25

∑
s′,r

p(s′, r | s, a)︸ ︷︷ ︸
1

[ r︸︷︷︸
−1

+ γ︸︷︷︸
1

vπ(s′)]

= 0.25(−1− 22− 1− 20− 1− 14− 1 + vπ(15))

Solve the above equation gives us vπ(15) = −20.

Now suppose the dynamics of 13 also changed. We do the iterative policy evaluation. The
initialization is natural: we let V0(s) = vπ(s), where vπ is the value when the dynamics are
unchanged, as shown in the k = ∞ case in Figure 4.1. Note that, especially, V0(15) = −20,
where −20 is what we just derived for vπ(15).

Particularly, we do the “immediate overwriting”. First we update the value of 13.

V1(13) =
∑
a

π(a|s)︸ ︷︷ ︸
0.25

∑
s′,r

p(s′, r | s, a)︸ ︷︷ ︸
1

[ r︸︷︷︸
−1

+ γ︸︷︷︸
1

V0(s
′)]

= 0.25(−1− 20− 1− 22− 1− 14− 1− 20)

= 20

Then we immediate update V1(15) using the updated V1(13). Note this is “overwriting”.

V1(15) =
∑
a

π(a|s)︸ ︷︷ ︸
0.25

∑
s′,r

p(s′, r | s, a)︸ ︷︷ ︸
1

[ r︸︷︷︸
−1

+ γ︸︷︷︸
1

V0(s
′)]

= 0.25(−1− 22− 1− 20− 1− 14− 1− 20)

= 20

As we proceed, we will see nothing is changed – the initialization is good enough. Hence the
iterative policy evaluation ends with 1 iteration. V1(15) = −20 for this case.

�
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Exercise 4.3. What are the equations analogous to (4.3), (4.4), and (4.5) for the action-value
function qπ and its successive approximation by a sequence of functions q0, q1, q2, · · · ?

Solution. Equations that are analogous to (4.3) and (4.4)

qπ(s, a) = Eπ[Gt |Gt = s,At = a]

= Eπ[Rt+1 + γVπ(St+1) | St = s,At = a]

= Eπ[Rt+1 + γ
∑
a′

π(a′|s′)qπ(s′, a′) | St = s,At = a]

=
∑
s′,r

p(s′, r | s, a)

[
r + γ

∑
a′

qπ(s′, a′)π(a′|s′)

]
.

The equation that is analogous to (4.5)

qk+1(s, a) =
∑
s′,r

p(s′, r | s, a)

[
r + γ

∑
a′

qk(s
′, a′)π(a′|s′)

]
.

�

Exercise 4.4. In some undiscounted episodic tasks there may be policies for which eventual
termination is not guaranteed. For example, in the grid problem above it is possible to go
back and forth between two states forever. In a task that is otherwise perfectly sensible, vπ(s)
may be negative infinity for some policies and states, in which case the algorithm for iterative
policy evaluation given in Figure 4.1 will not terminate. As a purely practical matter, how
might we amend this algorithm to as- sure termination even in this case? Assume that eventual
termination is guaranteed under the optimal policy.

Solution. We can restricted to considering only policies that are ε-soft, as shown in exercise
4.7. In this way, we will avoid trapping in some fixed loops, and every step our agent takes will
have some chance to freely explore its world.

�

Exercise 4.5. (programming) Write a program for policy iteration and re-solve Jack’s car
rental problem with the following changes. One of Jack’s employees at the first location rides
a bus home each night and lives near the second location. She is happy to shuttle one car to
the second location for free. Each additional car still costs $2, as do all cars moved in the other
direction. In addition, Jack has limited parking space at each location. If more than 10 cars
are kept overnight at a location (after any moving of cars), then an additional cost of $4 must
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be incurred to use a second parking lot (independent of how many cars are kept there). These
sorts of nonlinearities and arbitrary dynamics often occur in real problems and cannot easily be
handled by optimization methods other than dynamic programming. To check your program,
first replicate the results given for the original problem. If your computer is too slow for the full
problem, cut all the numbers of cars in half.

Solution. Please see exer4.5.py �

Exercise 4.6. How would policy iteration be defined for action values? Give a complete al-
gorithm for computing q∗, analogous to that on page 87 for computing v∗. Please pay special
attention to this exercise, because the ideas involved will be used throughout the rest of the
book.

Solution.

Algorithm 1: Policy iteration (using q(s, a))

1. inputs : q∗(s, a) = 0, for all s ∈ S+ and a ∈ A.

2. /* The policy evaluation step */

repeat
∆← 0;
foreach (s, a) ∈ (S ×A) do

q ← q∗(s, a);
q∗(s, a)←

∑
s′,r

p(s′, r | s, a) [r + γ
∑

a′ qπ(s′, a′)π(a′|s′)] ;

∆← max(∆, |q − q∗(s, a)|)
until ∆ < θ (a small positive number);

3. /* The policy improvement step */

policy-stable ← true.
foreach s ∈ S do

old-action ← π(s) ;
π(s)← arg max

a
q∗(s, a) ;

If old-action 6= π(s), then policy-stale ← false.

If policy-stable, then stop and return q ≈ q∗ and π ≈ π∗; else go to 2.

�

Exercise 4.7. Suppose you are restricted to considering only policies that are ε-soft, meaning
that the probability of selecting each action in each state, s, is at least ε/|A(s)|. Describe
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qualitatively the changes that would be required in each of the steps 3, 2, and 1, in that order,
of the policy iteration algorithm for v∗ (page 87).

Solution. For Step 3. Policy Improvement, instead of dictating the action specified by the
argmax, we allow a uniform probability of ε

|A|−1 for all other actions.

For Step 2 and 1, nothing need to be changed.

�

Exercise 4.8. Why does the optimal policy for the gambler’s problem have such a curious
form? In particular, for capital of 50 it bets it all on one flip, but for capital of 51 it does not.
Why is this a good policy?

Solution. �

Exercise 4.9. (programming) Implement value iteration for the gambler’s problem and solve
it for ph = 0.25 and ph = 0.55. In programming, you may find it convenient to introduce two
dummy states corresponding to termination with capital of 0 and 100, giving them values of 0
and 1 respectively. Show your results graphically, as in Figure 4.3. Are your results stable as
θ → 0?

Solution. Please see exer4.9.py. �

Exercise 4.10. What is the analog of the value iteration backup (4.10) for action values,
qk+1(s, a)?

Solution. We simply re-write (4.2) into an update equation.

qk+1(s, a) =
∑
s′,r

p(s′, r|s, a)
[
r + γmax

a
qk(s

′, a′)
]
.

�
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5 Monte Carlo Methods

Exercise 5.1. Consider the diagrams on the right in Figure 5.1. Why does the estimated value
function jump up for the last two rows in the rear? Why does it drop off for the whole last row
on the left? Why are the frontmost values higher in the upper diagrams than in the lower?

Solution. (i) The estimated value function jump up for the last two rows in the rear because
sticks at 21 and 20 has a high chance to win. (ii) It drops off for the whole last row on the left
because if the dealer shows Ace, then the dealer has at least one Ace, which allows the dealer
to have a reasonable chance to win or draw the game, compared to the case that the dealer has
no Ace. (iii) The frontmost values higher in the upper diagrams than in the lower, because the
Ace gives the flexibility of using it as 1 or 11, which is an advantage. Consider the case that the
player sum is 12. If there is no usable Ace, and if the player gets an additional face card, the
player goes bust. But suppose the player has a usable Ace, an additional face card is OK. The
usable Ace provides the advantage for upper diagram. �

Exercise 5.2. What is the backup diagram for Monte Carlo estimation of qπ?

Solution. I would expect the backup diagram looks like: filled circle (action) → circle (state)
→ filled circle (action) → circle (state) · · · terminal state.

In fact, the diagram is given in Figure 7.3 of this book... It is the second diagram on the right:
∞− step Sarsa aka Monte Carlo.

�

Exercise 5.3. What is the equation analogous to (5.5) for action values Q(s, a) instead of state
values V (s), again given returns generated using µ?

Solution. Similar to the case of V(s), we write

Q(s, a) =

∑
t∈T ρ

T (t)
t Gt

|T (s, a)|
.

In the above equation, for the every-visit method, T (s, a) denotes the set of all time steps that a
is performed upon s; for the first-visit method, T (s, a) denotes the first time that a is performed
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upon s in the episode. {Gt}t∈T (s,a) are the returns that pertain to the state-action pair (s, a).

{ρT (t)t }t∈T (s) are the importance -sampling ratio, which is defined as

ρTt =
p(St+1|St, At)

∏T−1
k=t+1 π(Ak|Sk)p(Sk+1|Sk.Ak)

p(St+1|St, At)
∏T−1
k=t+1 µ(Ak|Sk)p(Sk+1|Sk.Ak)

=

∏T−1
k=t+1 π(Ak|Sk)∏T−1
k=t+1 µ(Ak|Sk)

�

Exercise 5.4. In learning curves such as those shown in Figure 5.4 error generally decreases
with training, as indeed happened for the ordinary importance-sampling method. But for the
weighted importance-sampling method error first increased and then decreased. Why do you
think this happened?

Solution. This happens because weighted importance sampling is biased, though this bias con-
verge to 0 asymptotically.

�

Exercise 5.5. The results with Example 5.5 and shown in Figure 5.5 used a first- visit MC
method. Suppose that instead an every-visit MC method was used on the same problem. Would
the variance of the estimator still be infinite? Why or why not?

Solution. Following the argument in the textbook about the relationship between expectation
and variance, we only need to show the expected square of the importance-sampling-scaled
return is infinite. That is to say, we need to show:

E

∑t∈T (s) ρ
T (t)
t Gt

|T (s)|

 =∞

where T (s) is the index set of all time steps in which state s is visited.

Note that the equation used in the textbook for first-visit-MC method is a special case of the
above equation: It makes T = {0} and |T | = 1, i.e., it is just the first visit to s within the
episode. That is to say, in the textbook, we have shown

E
[
(ρ0G0)

2
]

=∞.
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But since returns are non-negative in this example,

E

∑t∈T (s) ρ
T (t)
t Gt

|T (s)|

 =
1

|T (s)|
E

 ∑
t∈T (s)

ρ
T (t)
t Gt

 ≥ 1

|T (s)|
E
[
(ρ0G0)

2
]

=∞.

�

Exercise 5.6. Modify the algorithm for first-visit MC policy evaluation (Section 5.1) to use the
incremental implementation for sample averages described in Section 2.3.

Solution.

Algorithm 2: First-visit MC Policy Evaluation (using incremental implementation)

inputs : π ← policy to be evaluated
V (s)← 0 for all s.
N(s)← 0 for all s.
Return(s) ← an empty list, for all s ∈ S

RepeatForever
Generate an episode using π;
foreach state s appearing in the episode do

G← return following the first occurence of s ;
N(s)← N(s) + 1 ;
V (s)← V (s) + 1

N(s) [G− V (s)] ;

�

Exercise 5.7. Derive the weighted-average update rule (5.7) from (5.6). Follow the pattern of
the derivation of the unweighted rule (2.3).

Solution.

Vn+1 =

∑n
k=1WkGk∑n
k=1Wk

=
1∑n

k=1Wk

[
WnGn +

n−1∑
k=1

WkGk

]

=
1∑n

k=1Wk

WnGn +

[
n−1∑
k=1

Wk

] ∑n−1
k=1 WkGk∑n−1
k=1 Wk︸ ︷︷ ︸
Vn


= Vn(1− Wn∑n

k=1Wk
) +

WnGn∑n
k=1Wk

= Vn +
Wn

Cn
[Gn − Vn]
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where Cn =
∑n

k=1Wk.

�

Exercise 5.8. Racetrack (programming). Consider driving a race car around a turn like
those shown in Figure 5.6. You want to go as fast as possible, but not so fast as to run off
the track. In our simplified racetrack, the car is at one of a discrete set of grid positions, the
cells in the diagram. The velocity is also discrete, a number of grid cells moved horizontally
and vertically per time step. The actions are increments to the velocity components. Each may
be changed by +1, −1, or 0 in one step, for a total of nine actions. Both velocity components
are restricted to be nonnegative and less than 5, and they cannot both be zero except at the
starting line. Each episode begins in one of the randomly selected start states with both velocity
components zero and ends when the car crosses the finish line. The rewards are -1 for each step
until the car crosses the finish line. If the car hits the track boundary, it is moved back to a
random position on the starting line, both velocity components are reduced to zero, and the
episode continues. Before updating the car?s location at each time step, check to see if the
projected path of the car intersects the track boundary. If it intersects the finish line, the
episode ends; if it intersects anywhere else, the car is considered to have hit the track boundary
and is sent back to the starting line. To make the task more challenging, with probability 0.1 at
each time step the velocity increments are both zero, independently of the intended increments.
Apply a Monte Carlo control method to this task to compute the optimal policy from each
starting state. Exhibit several trajectories following the optimal policy (but turn the noise off
for these trajectories).

Solution. Please see exer5.8.py
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�

*Exercise 5.9. Modify the algorithm for off-policy Monte Carlo control (page 119) to use the
idea of the truncated weighted-average estimator (5.9). Note that you will first need to convert
this equation to action values.

Solution. �

6 Temporal-Difference Learning

Exercise 6.1. This is an exercise to help develop your intuition about why TD methods are
often more efficient than Monte Carlo methods. Consider the driving home example and how
it is addressed by TD and Monte Carlo methods. Can you imagine a scenario in which a TD
update would be better on average than a Monte Carlo update? Give an example scenario?a
description of past experience and a current state?in which you would expect the TD update to
be better. Here’s a hint: Suppose you have lots of experience driving home from work. Then
you move to a new building and a new parking lot (but you still enter the highway at the same
place). Now you are starting to learn predictions for the new building. Can you see why TD
updates are likely to be much better, at least initially, in this case? Might the same sort of thing
happen in the original task?

Solution. As long as I enter the highway, my estimates for the remaining time are supposed to
be very accurate as a result of previous experience of driving home from work. In this case, it is
reasonable to update my estimation for the remaining time once I enter the highway (which is
the TD method), instead of only updating it once I arrive at home (which is the MC method).
For this reason, TD updates are likely to be much better, at least initially. I assume the same
sort of thing would happen in the original task, given that one can elaborate a prior knowledge
of some relatively accurate estimations.

�

Exercise 6.2. From Figure 6.2 (left) it appears that the first episode results in a change in only
V (A). What does this tell you about what happened on the first episode? Why was only the
estimate for this one state changed? By exactly how much was it changed?
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Solution.
(i)This tells me in the first episode, the random walk ended up in the right.
(ii) Suppose the random walk ends up in the right, one can see that only the estimate for A is
changed– suppose s’ is not A, s is the previous state of s, then we have

V (s) = V (s)︸︷︷︸
0.5

+α

 R︸︷︷︸
0

+V (s′)︸ ︷︷ ︸
0.5

−V (s)︸︷︷︸
0.5

 = 0.5

(iii) Suppose the random walk ends up in the right, one can see that V(A) = 0.45

V (A) = V (A)︸ ︷︷ ︸
0.5

+ α︸︷︷︸
0.1

 R︸︷︷︸
0

+V (LeftBox)︸ ︷︷ ︸
0

−V (A)︸ ︷︷ ︸
0.5

 = 0.45.

�

Exercise 6.3. The specific results shown in Figure 6.2 (right) are dependent on the value of
the step-size parameter, α. Do you think the conclusions about which algorithm is better would
be affected if a wider range of α values were used? Is there a different, fixed value of α at which
either algorithm would have performed significantly better than shown? Why or why not?

Solution. I would assume MC and TD perform equally bad if α is chosen to be too large, say,
greater than 1.

I am not sure what “fixed value of α” exactly means. If “fixed value” = “constant value”, than
further experiments are needed. However, if fixed value means values with closed-form algebraic
expression, we shall set α = 1

N(s) , where N(s) is the number of visits to state s, and update each

V (s) using its α. Since this problem has a stationary environment, it is reasonable to assume
α = 1

N(s) performs well.

�

*Exercise 6.4. In Figure 6.2 (right) the RMS error of the TD method seems to go down and
then up again, particularly at high α’s. What could have caused this? Do you think this always
occurs, or might it be a function of how the approximate value function was initialized?

Solution. �

25



Tianlin Liu tliu@jacobs-alumni.de

Exercise 6.5. 6.5 Above we stated that the true values for the random walk task are 1
6 ,

2
6 ,

3
6 ,

4
6 ,

and 5
6 , for states A through E. Describe at least two different ways that these could have been

computed. Which would you guess we actually used? Why?

Solution.

• Method 1: The true value of each state is the probability of terminating on the right if
starting from that state. It is obvious that xC = 0.5, as ending up in the left or right has the
same probability for simple random walk.

Now Imagine if one stands in D, then one will go to C or go to E with equal probability. Once
arrive at C, the probability of ending up in the right is given by xC ; once arrive at E, the
probability of ending up in the right is given by xE . Hence

xD = P(go to C from D)× xC + P(go to E from E)× xE =
xC + xE

2
.

In the same fashion, one get

xA =
xLeftBox + xB

2
.

xB =
xA + xC

2
.

xE =
xRightBox + xD

2
.

Note xLeftBox = 0, xLeftBox = 1. Solving the above linear equations gives the desired results.

• Method 2 Use iterative value iteration bruteforcely. Since iterative value iteration guarantees
to converge, the algorithm gives out desired values.

Method 1 is much easier, and therefore I assume the authors use the first one.

�

*Exercise 6.6. Design an off-policy version of the TD(0) update that can be used with arbitrary
target policy π and covering behavior policy µ, using at each step t the importance sampling
ratio ρt+1

t (5.3).
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Solution. �

Exercise 6.7. Re-solve the windy gridworld task assuming eight possible actions, including the
diagonal moves, rather than the usual four. How much better can you do with the extra actions?
Can you do even better by including a ninth action that causes no movement at all other than
that caused by the wind?

Solution. Please see exer6.7.py

�

Exercise 6.8. Re-solve the windy gridworld task with King’s moves, assuming that the effect
of the wind, if there is any, is stochastic, sometimes varying by 1 from the mean values given for
each column. That is, a third of the time you move exactly according to these values, as in the
previous exercise, but also a third of the time you move one cell above that, and another third
of the time you move one cell below that. For example, if you are one cell to the right of the
goal and you move left, then one-third of the time you move one cell above the goal, one-third
of the time you move two cells above the goal, and one-third of the time you move to the goal.

Solution. Please see exer6.8.py

�

Exercise 6.9. Why is Q-learning considered an off-policy control method?

Solution. This is because, as has already been stated in the textbook, “the learned action-value
function, Q, directly approximates Q∗, the optimal action-value function, independent of the
policy being followed.”

More specifically, to update Q in each iteration in Q-learning, given S, A, R, and S′, we pretend
that we execute a′ = arg maxaQ(S′, a) for the next iteration. In other words, we pretend we
execute the absolutely greedy action. It is a pretend, as in the next iteration, we actually execute
the ε−greedy action. In this sense, we improve a policy which is different from that used to
generate the data. Hence it is a off-policy method.

This solution partially owe to https://stats.stackexchange.com/questions/184657/

difference-between-off-policy-and-on-policy-learning
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�

*Exercise 6.10. What are the update equations for Double Expected Sarsa with an ε-greedy
target policy?

Solution. �

Exercise 6.11. Describe how the task of Jack’s Car Rental (Example 4.2) could be reformulated
in terms of afterstates. Why, in terms of this specific task, would such a reformulation be likely
to speed convergence?

Solution. The current definition of state in Jack’s Car Rental problem is a tuple, in which each
entry indicates the number of cars in a location at the end of the day.

We can define the afterstates as a tuple, in which each entry is the number of cars in a location
at the beginning of a day. That is to say, the states are defined after the action, i.e., car-moving
during the night, are executed.

This reformulation is likely to speed convergence, as this reformulation reduces the dimension
of states. Consider the case (i) at the end of a day, Jack has 4 cars in location A and 8 cars in
location B, and he decides to transport 2 cars from B to A; case (ii) In the end of a day, Jack
has 6 cars in location A and 6 cars in location B, and he decides to do nothing. The cases (i)
and (ii) boils down to the same aftertstate, namely, (6, 6).

�

7 Multi-step Bootstrapping

Exercise 7.1. Why do you think a larger random walk task (19 states instead of 5) was used
in the examples of this chapter? Would a smaller walk have shifted the advantage to a different
value of n? How about the change in left-side outcome from 0 to 1 made in the larger walk? Do
you think that made any difference in the best value of n?

Solution.
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• I would expect 5 states are too few to test the n-step TD if n is fairly large, say, 64, 128, 256,
512 as shown in this example. It is very likely that the random walk reaches the terminal
state using less than n steps. Recall that the value function of n-step TD is not updated for
the first n− 1 step. Hence if the state number is significantly smaller than that of the n, it is
very likely that n-step TD algorithm do nothing before it reaches the terminal states, and in
this case, it is exactly the same as MC method. We want to test n-step TD method but not
MC method.

• Following the same reasoning above, I would expect a smaller walk shifts to a different value
of n.

• I do not think changing in left-side outcome from 0 to 1 make any difference in the best
value of n. But perhaps this speeds up the learning efficiency for n-step TD. As now the
reward for achieving the left terminal state (= −1) is different from the reward for achieving
any intermediate state (= 0), this difference makes the agent discern that, after n steps, if it
reaches the left terminal state or somewhere in the intermediate step.

�

8 Planning and Learning with Tabular Methods

Exercise 8.1. The nonplanning method looks particularly poor in Figure 8.4 because it is a
one-step method; a method using multi-step bootstrapping would do better. Do you think one
of the multi-step bootstrapping methods from Chapter 7 could do as well as the Dyna method?
Explain why or why not.

Solution. To my understanding, Dyna has two advantages: (i) it updates a set of values in
an episode, instead of just one value as in the without-planning case (ii) it exploits the both
“learning from real experience” and “learning from simulated experience”. Now suppose we
use a multi-step bootstrapping methods from Chapter 7, the advantage (i) vanishes as both
methods enjoy this property, but the advantage (ii) of Dyna is not exploited by any multi-step
bootstrapping method. For this reason, I would not expect one of the multi-step bootstrapping
methods from Chapter 7 could do as well as the Dyna method.

�

Exercise 8.2. Why did the Dyna agent with exploration bonus, Dyna-Q+, perform better in
the first phase as well as in the second phase of the blocking and shortcut experiments?
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Solution. Dyna-Q+ tends to execute two kinds of actions: (i) actions which has high values
according to previous experience (ii) actions that haven’t been chosen for a long time. For this
reason, Dyna-Q+ outperforms Dyna in both phases. In the first phase, initially, Dyna simply
randomly choose actions, but Dyna-Q+ tend to try new actions or the effective old actions.
This makes Dyna-Q+ learn the values more effectively. In the second phase, Dyna-Q+ is more
exploratory, and therefore performs better than Dyna.

�

Exercise 8.3. Careful inspection of Figure 8.6 reveals that the difference between Dyna-Q+
and Dyna-Q narrowed slightly over the first part of the experiment. What is the reason for this?

Solution. Assume the environment is fixed, when the algorithm learns the environment rea-
sonably well, keep trying exploratory actions as in Dyna-Q+ is not helpful anymore, or even
wasteful. Since both algorithm converge to the optimal policy, the difference of cumulative
reward diminishes. �

Exercise 8.4. The exploration bonus described above actually changes the estimated values
of states and actions. Is this necessary? Suppose the bonus κ

√
τ was used not in backups,

but solely in action selection. That is, suppose the action selected was always that for which
Q(S, a) + κ

√
τSa was maximal. Carry out a gridworld experiment that tests and illustrates the

strengths and weaknesses of this alternate approach.

Solution. Please see exer8.4.py.

�

9 On-Policy Prediction wIth Approximation

Exercise 9.1. Why does (9.17) define (N + 1)d distinct functions for dimension d?

Solution. We need to count how many different sn1
1 ...s

nd
d are there, where nd is chosen from

{0, · · · , N}. There are (N + 1) way to choose an ni, and we ought to choose ni for d times.
Hence there are (N + 1)d distinct ones. �
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Exercise 9.2. Give N and the ci,j defining the basis functions that produce feature vectors
(1, s1, s2, s1s2, s

2
1, s

2
2, s1s

2
2, s

2
1s2, s

2
1s

2
2)
T .

Solution. The basis functions are defined as

φi(s) := sci,11 sci,22

for (1, s1, s2, s1s2, s
2
1, s

2
2, s1s

2
2, s

2
1s2, s

2
1s

2
2)
T , where {ci,1, ci,2} for i from 1 to d is defined as

{0, 0}, {1, 0}, {0, 1}, {2, 0}, {0, 2}, {1, 2}, {2, 1}, {2, 2}

respectively.

�

Exercise 9.3. Why does (9.18) define (N + 1)d distinct functions for dimension d?

Solution. In the exactly the same fashion as that of the previous problem, we count how many
such functions are there. There are (N+1) ways to choose cij and we ought to choose cij for d

times. Hence there are (N + 1)d numbers of such functions.

�

Exercise 9.4. Suppose we believe that one of two state dimensions is more likely to have an
e?ect on the value function than is the other, that generalization should be primarily across this
dimension rather than along it. What kind of tilings could be used to take advantage of this
prior knowledge?

Solution. �
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