
Perspective of Math -Kechun (Coco) Mao, Tianlin Liu

Dinitz Problem

Kechun (Coco) Mao, Tianlin Liu
kmao@andrew.cmu.edu, t.liu@jacobs-university.de

Mathematics Department

Jacobs University University

Campus Ring, Bremen, Gremany

Abstract

In this paper, we basically follow the chapter Dinitz
Problem of Aigner and Zieglers’ book Proof from THE
BOOK, 4th edition. Our main contribution was to make the
material more readable and more beginner-friendly. We in-
troduce Dinitz Problem, its background, and its full proof in
this paper. We will assume basic knowledge of graph thoery
from the readers and thus do not give definitions of some
basic graph theory concepts, but we will give many clear
definitions and abundant examples to help readers under-
stand the material.

1. Introduction
Jeff Dinitz proposed a simple-sounding problem in 1978,

but it was not answered until 1994 by Fred Galvin with
a surprisingly simple solution. Dinitz problem is as follows:

Consider n2 cells arranged in an (n× n)-square, and let
(i, j) denote the cell in row i and column j. Suppose that
for every cell (i, j) we are given a set C(i, j) of n colours.
Is it then always possible to colour the whole array by
picking for each cell (i, j) a colour from its set C(i, j) such
that the colours in each row and each column are distinct?

Such a square where the colour in each row and column
are chosen from a “local” set of colours and every colours
in one row or one column are distinct is called Partial
Latin Square[2].

A special case is when all colour sets C(i, j) are the
same and the square is called Latin Suqare. For Latin
Square, it was proved in 1981 that if fewer than n cells
are filled in an (n × n)-array, one can always complete it
to obtain a Latin square (Evans conjecture). However, the
difficulty of Partial Latin Square derives from the fact that
not every colour of C is available at each cell. For example,

for the following square

{1,2} {2,3}
{1,3} {2,3}

While there indeed exists partial Latin square, that is

2 3
1 2

If we happen to choose 1 and 2 for the first row, we will
not find valid numbers to fill in for the second row; and the
other hand, if we are lucky enough to choose 2 and 3 for
the first row, then we legal to pick 3 and 2 in the second
row and we are done. The question is, without trial and
error, how shall we see whether this graph can be coloured
properly immediately or not? Further, what is the condition
that guarantees us to have a proper colouring? This is what
the Dinitz problem concerns about.

We will rephrase Dinitz problem in the language of
graph theory to facilitate the proof later. To do so, we will
introduce following definitions

Definition. A proper colouring of a graph is an assignment
of colours to the vertices of the graph so that no two adja-
cent vertices have the same colour.

Definition. A List colouring is a proper colouring c such
that c: V −→ ∪v∈V C(v), where c(v) ∈ C(v), ∀v ∈ V

Definition. List chromatic number of a graph G, denoted
as χl(G), is the smallest number k such that any list of
colour sets c(v), |c(v)| = k, ∀v ∈ V always exits a list
colouring.

We will also need to turn the square into a graph, (V,E).
For a n×n square, we will construct a Sn as follows:
Each cell is represented by a vertex. There is an edge

Kechun(Coco) Mao, Tianlin Liu 1 kmao@andrew.cmu.edu, t.liu@jacobs-university.de

Perspective of Math -Kechun (Coco) Mao, Tianlin Liu

between two vertices if the cells they represent are in the
same row or the same column.
For 3× 3 square, S3 is as follows

Since any n cells in a row are pairwise adjacent, we need
at least n colours, that is Xl(Sn) ≥ n.

Finally, we can summarize the Dinitz problem into one
simple question:

Xl(Sn) = n?

This expression is succint and accurate.
We shall see in the following sections how we can prove

Xl(Sn) = n?.

2 Lemmas
Fred Galvin, who solved Dinitz problem, combined two

well-known math results. We shall introduce and prove
these two math results that Galvin used before diving into
the main proof.

2.1 Kernel and Directed Graph

In order to study Dinitz Problem rigorously, we need to
introduce the notion of kernel in directed graph. Then, we
will give out our lemma 1 which turned out to be the key for
this problem.

Definition. Let ~G be a directed graph. A kernel K ⊆ V is
a subset of the vertices such that:

1. K is independent in G

2. For every u /∈ K there exists a vertex v ∈ K with an
edge u −→ v

Definition. For a subset A ⊆ V we denote by GA the sub-
graph which has A as vertex set and which contains all
edges of G between vertices of A. We say GA the subgraph
induced by A.

Definition. For a vertex v ∈ V , the outdegree d−(v) is the
number of edges with v as initial vetex, and indegree d+(v)
is the number of edges with v as the target vertex.

Lemma 1. Let ~G = (V,E) be a directed graph with each
vertex v having a colour set C(v), if both conditions below
are satisfied:

1. |C(v)| ≤ d+(v) + 1

2. every induced graph of ~G has a kernel

then there exists a list colouring of G with a colour from
C(v) for each v.

Proof.

We will prove by induction on the number of vertices
|V |.

Base Case: When |V | = 1, the statement is trivially
correct, since we can just assign the only colour we have to
that single vertex.

Induction Hypothesis: We inductively suppose that for
|V | = n and it satisfied the two conditions above, then
there exists a list colouring of G with a colour from C(v)
for each v.

Step Case: When |V | = n + 1 , we need to show that
there exists a list colouring of G with a colour from C(v)
for each v.

Pick any colour c ∈ C = ∪v∈V C(v). Define a set
A(c) := v ∈ V : c ∈ C(v)

Since A is a subset of V, the graph A induced processes
a kernel, say K(c). Recall that a kernel is independent, and
therefore there is no edges connecting any 2 vertices in this
kernel. Hence it is legal to colour all these vertices in K(c)
with the same colour c.

Now, we delete c from any C(v) that c was in and delete
K(c) from G. That is to say, we give up using the colour
c, and at the same time we erase all vertices that are in the
colour c. Let’s call this new graph G′, call the new colour
set C ′

Next, let’s have a look at the new graph G′ induced by
V \K(c). Our goal is to show that this new graph falls into
our Induction Hypothesis case.

Clearly, as we deleted at least one vertex from the graph
G, now |V | ≤ n. We are left to show that G′ satisfies the
two conditions listed in the lemma statement. Note that the
second condition obviously holds, because any subgraph
in G′ is a subgraph in G. The more complicated part is to

Kechun(Coco) Mao, Tianlin Liu 2 kmao@andrew.cmu.edu, t.liu@jacobs-university.de

Perspective of Math -Kechun (Coco) Mao, Tianlin Liu

verify |C(v)| ≤ d+(v) + 1 for any v.

Pick any vertex v ∈ A(c) \K(c). Because of the second
condition of kernel, before the deleting process, there was
an edge went out of v and connects a vertex u ∈ K(c).
That is to say, after the deleting, d+v decreased at least by
1. Since |C(v)| decreases by 1 exactly and d+v decrease
by at least 1, the condition |C(v)| ≤ d+(v) + 1 is still
satisfied. Note that if v is out of A(c), then C(v) does not
change and d+(v) can only go down, therefore it satisfied
the condition, too.

Now, we can use our induction hypothesis on G′, that is
G′ has a list colouring. Then if we combineG′’s list colour-
ing with the deleted vertices colored in c, we will arrive at a
list coloring for G with a colour from C(v) for each v.

2.2 Stable Matching Theorem
The second lemma will require following definitions.

Definition. A bipartite graph G = (X ∪ Y,E) is a graph
with the following property: The vertex set V is split into
two disjoint parts X and Y such that every edge has one
endvertex in X and the other in Y.

Definition. A matching M in a bipartite graph G is a set
of edges such that no two edges in M have a common end-
vertex.

Definition. In G = (X ∪ Y,E), a ranking of vertices ad-
jacent to a vertex v, denoted by N(v) (neighbors of v), is a
list such that {z1 > z2 > > zd(v)}, in which z’s are listed
in the descending order by v’s preferences.

Definition. A matching M of G = (X ∪ Y,E), in which
each vertex has a ranking of its adjacent vertices, is called
stable if the following condition holds: Whenever uv ∈ E \
M , u ∈ X , v ∈ Y , then either uy ∈M with y > v in N(u)
or xv ∈M with x > u in N(v), or both.

To understand these concepts in a more intuitive way, we
shall give the following analogy in real life. For bipartite
graph, we can imagine a group of boys to be vertices in
X and a group of girls to be vertices in Y (not necessairly
equal number). If a guy and a girl have potential to marry,
there is an edge between them. For a girl, she may prefer
one guy over another, so each person has a ranking of the
opposite gender. A matching is then a mass-wedding with
no person committing bigamy. Finally, a matching is stable
if it never happens that u and v are not married but u prefers
v to his partner (if he has one at all) and v prefers u to her
mate (if she has one at all).

The following graph shows a bipartite graph that has a
stable matching (matching edges in bold).

Our second theorem claims that

Lemma 2. A stable matching always exists for any bipartite
graph of any possible ranking of N(v) for each v.

Proof.
We will give an algorithm and show that running the algo-
rithm indeed finds a stable matching. For ease of under-
standing, we will describe the algorithm in the language of
the real life example.
The algorithm to find a stable matching of couples to marry
runs as follows. We will have a set R and R = X at first,
that is, R contains all the men.

1. All men in R propose to their top choice among girls
they have not been rejected yet.

2. If a girl receives multiple proposals, she keeps the one
she likes the best and keeps him on the strings. If
she already has a man on the string from last round,
she considers him together with the new proposals and
keeps the best on the string. She rejects all other men.

3. The men who gets rejected form a reservoir R. How-
ever, a man who proposes his last choice and gets re-
jected is out of our consideration, that is, he will not
get a match. If R is empty, we stop and the couples on
the strings form a stable matching. If R is not empty
yet, go back to step 1.

We claim that those couples on the strings indeed form a
stable matching. The argument is in fact quite straightfor-
ward by checking the definition of stable matching.
If uv ∈ E but uv /∈ M , then one of the following cases
must have happened

1. If u did not propose to v ever, it must be the case that
u, the man, found a better girl and got accepted before
he even got around to v. This case implies ∃uy ∈ M
with y > v in N(u).

2. If u indeed proposed to v before but got rejected, it
must be the case that v, the girl, rejected u because
another man she likes more proposed to her. This case
implies ∃xv ∈M with x > u in N(v).

This is exactly the condition of a stable matching.

Kechun(Coco) Mao, Tianlin Liu 3 kmao@andrew.cmu.edu, t.liu@jacobs-university.de

Perspective of Math -Kechun (Coco) Mao, Tianlin Liu

3 The Solution to Dinitz Problem
The answer to Dinitz Problem is positive, that is

Xl(Sn) = n indeed holds.

Before we actually start to prove it, let’s see how shall
we proceed our proof in order to fully use our lemmas. If
we can form a directed graph from the n × n square with
such an orientation that each vertex v satifies the condition
d+(v) ≤ |C(v)| − 1 = n − 1 and any subgraph of this
directed graph has a kernel, by lemma 1, we will be done.
To show there is indeed a kernel for every subgraph, we
“fish” our kernel by using the property of stable matching.
That is to say, we need to verify three things:

1. We can construct a directed graph ~G from Sn

2. d+(v) ≤ |C(v)| − 1 = n− 1

3. Every subgraph of ~G possesses a kernel.

We will verify above three conditions step by step. Please
note that in Step 1, we verify (1); in Step 2, we verify (2);
in Step 3 and Step 4, we verify (3). After these 4 steps, we
simply use lemma 1, which directly provides our desired
result.

Step 1 (Construct a directed graph):

We denote the vertices of Sn by

(i, j), 1 ≤ i, j ≤ n

Thus (i, j) and (r, s) are adjacent if and only if i = r or
j = s.

Let L be a latin square. Denote the entry of this latin
square at (i, j) position by L(i, j). Next, we make Sn into
directed graph ~Sn.

We denote:

(i, j) −→ (i, j′) if and only if L(i, j) < L(i, j′)

Moreover, We denote:

(i, j) −→ (i′, j) if and only if L(i, j) > L(i′, j)

That is to say, on a row, we point smaller entries to
bigger entries; on a column, we point bigger entries to
smaller entries. In this way, we finish our directed graph
constructing for the step 1.

The following is an example of a directed graph

Step 2 :

Claim: d+(i, j) = n− 1, ∀, (i, j).

This claim is more or less obvious to verify. Consider
any (i, j) = k in Sn. On a row, there are n− k entries that
are bigger than k, so there are n−k edges going out of (i, j)
in the row; on the other hand, there are k−1 entries that are
smaller than k in a column. That is to say, there are k − 1
edges pointing out of (i, j). A simple computation gives us:

d+(i, j) = n− k + k − 1 = n− 1

In the following steps, our goal is to show that every
subgraph of ~G possesses a kernel. As mentioned in the be-
ginning of this section, to find a kernel for every subgraph,
we will use the stable matching property of bipartite in
lemma 2. So before that, let’s construct a bipartite for each
subgraph.

Step 3 (Construct a bipartite for each subgraph):

Pick any subset A ⊆ V , let X be the set of rows of
L, and Y the set of its columns. We than can construct a
bipartite graph G = (X ∪ Y,A) in the following way: for
every (i, j) ∈ A, draw an edge linking i ∈ X , j ∈ Y .

Now, in order to use Lemma 2, we need to introduce
a ranking on the bipartite graph G = (X ∪ Y,A). Let
j′ > j in N(i) (remind that N(i) is the “choices” for i, in a
decreasing order of favour), if (i, j) −→ (i, j′). Let i′ > i
in N(j), if (i, j) −→ (i′, j). Now, G = (X ∪ Y,A) is a
bipartite with ranking. Then by Lemma 2, it has a stable
matching M.

Step 4 :

Claim: Every subgraph of ~G possesses a kernel. Specif-
ically, M in step 3 is a kernel for A, for any A as a subset of
G.

To prove M is a kernel for A, firstly let’s prove that
M is independent in A. This is quite obvious because for

Kechun(Coco) Mao, Tianlin Liu 4 kmao@andrew.cmu.edu, t.liu@jacobs-university.de

Perspective of Math -Kechun (Coco) Mao, Tianlin Liu

a stable matching, there is only one edge from i to j, for
(i, j) fixed in M. This means, there is no edges of M in
G = (X ∪ Y,A) sharing a same vertex.

Next, assume (i, j) ∈ A \ M . Then by definition of
stable matching, either exists (i, j′) ∈ M with j′ > j,
or (i′, j) ∈ M with i′ > i, or both. For ~Sn, this means
(i, j) −→ (i, j′) ∈ M or (i, j) −→ (i′, j) ∈ M . Hence M
is indeed a kernel.

So far, we checked all the conditions for using Lemma
1, which guarantees that n is indeed the smallest colouring
set that we can give all vertices in rows/columns distinctive
colours. Hence we are done.

4 Conclusion
In this paper we present the proof for the Dinitz Problem

in a piecemeal manner. In the section 1, we introduced basic
definitions to set up our question in a graph theory fashion.
In the section 2, we introduced two lemmas which turned
out crucial for solving the Dinitz Problem. In section 3, we
solve the Dinitz problem with the help of two lemmas.

5 Acknowledgement

The authors would like to gratefully and sincerely thank
Dr. Marcel Oliver for his instruction and guidance in and
out of the class Perspective of Mathematics Spring 2015.

The authors would also like to thank all students from
the class Perspective of Mathematics Spring 2015, Denis
Igorevich Korolev, Ekber Shahkeremov, Emanuel Stiuler,
Remus Marius Dumitrel. Thank them for their valuable
comments, suggestions, and assistances.

Please note that all figures in this paper are credited to
The Proof from THE BOOK.

6 References

[1] M. Aigner, G.M. Ziegler, Proofs from THE BOOK,
Springer, 2003.

[2] Partial Latin Square. (n.d.). Retrieved May 10, 2015,
from
http://mathworld.wolfram.com/PartialLatinSquare.html

Kechun(Coco) Mao, Tianlin Liu 5 kmao@andrew.cmu.edu, t.liu@jacobs-university.de

