
Harnessing Slow Dynamics in Neuromorphic
Computation

Tianlin Liu

May 24th 2019

Department of Computer Science and Electrical Engineering
Jacobs University Bremen

Bremen, 28759
Germany.

Supervisor:
Prof. Dr. Herbert Jaeger

Co-reviewer:
Prof. Dr. Marc-Thorsten Hütt

Submitted in partial fulfillment of the requirements
for the degree of master of science in Data Engineering.

Copyright c© 2019 Tianlin Liu

This research was sponsored by the European Horizon 2020 project NeuRAM3 (grant number 687299), a Jacobs
University Graduate Scholarship, and a SMARTSTART1 fellowship provided by the Bernstein Network and the
Volkswagen Foundation.

Keywords: Neuromorphic computation, Spiking neural networks, Reservoir computing

Statutory	Declaration	
	

	

Family	Name,	Given/First	Name	 Liu,	Tianlin	

Matriculation	number	
20331165
	

What	kind	of	thesis	are	you	submitting:	

Bachelor-,	Master-	or	PhD-Thesis	
Master	thesis	

	

English:	Declaration	of	Authorship	
		

I	hereby	declare	that	the	thesis	submitted	was	created	and	written	solely	by	myself	without	

any	external	support.	Any	sources,	direct	or	indirect,	are	marked	as	such.	I	am	aware	of	the	

fact	 that	 the	contents	of	 the	 thesis	 in	digital	 form	may	be	 revised	with	 regard	 to	usage	of	

unauthorized	aid	as	well	as	whether	the	whole	or	parts	of	it	may	be	identified	as	plagiarism.	I	

do	agree	my	work	to	be	entered	into	a	database	for	it	to	be	compared	with	existing	sources,	

where	it	will	remain	in	order	to	enable	further	comparisons	with	future	theses.	This	does	not	

grant	any	rights	of	reproduction	and	usage,	however.				

	

This	 document	 was	 neither	 presented	 to	 any	 other	 examination	 board	 nor	 has	 it	 been	

published.	

	

	

German:	Erklärung	der	Autorenschaft	(Urheberschaft)	
		

Ich	 erkläre	 hiermit,	 dass	 die	 vorliegende	 Arbeit	 ohne	 fremde	 Hilfe	 ausschließlich	 von	mir	

erstellt	und	geschrieben	worden	ist.	Jedwede	verwendeten	Quellen,	direkter	oder	indirekter	

Art,	sind	als	solche	kenntlich	gemacht	worden.	Mir	ist	die	Tatsache	bewusst,	dass	der	Inhalt	

der	Thesis	in	digitaler	Form	geprüft	werden	kann	im	Hinblick	darauf,	ob	es	sich	ganz	oder	in	

Teilen	 um	 ein	 Plagiat	 handelt.	 Ich	 bin	 damit	 einverstanden,	 dass	 meine	 Arbeit	 in	 einer	

Datenbank	 eingegeben	 werden	 kann,	 um	 mit	 bereits	 bestehenden	 Quellen	 verglichen	 zu	

werden	und	dort	auch	verbleibt,	um	mit	zukünftigen	Arbeiten	verglichen	werden	zu	können.	

Dies	berechtigt	jedoch	nicht	zur	Verwendung		oder	Vervielfältigung.				

	

Diese	Arbeit	wurde	noch	keiner	anderen	Prüfungsbehörde	vorgelegt	noch	wurde	sie	bisher	

veröffentlicht.	

……………………………………………………………………………………………………….	

Date,	Signature	

May 27th 2019

Abstract
Neuromorphic Computing is a nascent research field in which models and de-

vices are designed to process information by emulating biological neural systems.
Thanks to their superior energy efficiency, analog neuromorphic systems are highly
promising for embedded, wearable, and implantable systems. However, optimizing
neural networks deployed on these systems is challenging. One main challenge is
the so-called timescale mismatch: Dynamics of analog circuits tend to be too fast to
process real-time sensory inputs. In this thesis, we propose a few working solutions
to slow down dynamics of on-chip spiking neural networks. We empirically show
that, by harnessing slow dynamics, spiking neural networks on analog neuromor-
phic systems can gain non-trivial performance boosts on a battery of real-time signal
processing tasks.

Acknowledgments
I am indebted to many people who have been instrumental in my master level

study. First and foremost, my supervisor Professor Herbert Jaeger provided me in-
valuable guidance, and at the same time, tremendous research freedom. I would like
to express my sincere gratitude to him. I would also like to thank my colleagues in
the MINDS research group, Fatemeh Hadaeghi and Xu He, for productive collabora-
tions and inspiring scientific discussions. I am grateful to Professor Marc-Thorsten
Hütt for being the co-reviewer of this thesis.

I have greatly benefited from Roberto Cattaneo and Professor Giacomo Indiveri
(Institute of Neuroinformatics, Zurich), our NeuRAM3 EU project collaborators.
Many research efforts reported in this thesis were initialized based on a fruitful re-
search visit to Zurich hosted by Roberto Cattaneo and Professor Indiveri, without
whom this thesis would not have been possible.

I appreciate João Sedoc and Professor Lyle Ungar at the University of Pennsylva-
nia, who hosted me for a summer internship. My internship experience there enabled
me to expand my conceptions on various practically relevant machine learning tasks
such as natural language processing.

Financially, I gratefully acknowledge the funding of the NeuRAM3 project of
the European Horizon 2020 programme, a graduate scholarship provided by Jacobs
University, and a SMARTSTART1 fellowship received from the Bernstein Network
and the Volkswagen Foundation.

At a personal level, I thank my parents who unfailingly support me exploring
different scientific disciplines throughout my student career. My special thanks go
to Jens Pieper, my host-father at Bremen, who provides me with continuous encour-
agement (together with Brötchen, Sinalco, and Kartoffelsuppe) throughout my years
of study at Jacobs.

vi

Contents

1 Introduction 1
1.1 Neuromorphic computing . 2
1.2 Recurrent network of spiking neurons . 4

1.2.1 LIF neurons . 4
1.2.2 Recurrent network of LIF neurons . 4
1.2.3 Supervised training for RNN of LIF neurons 6

1.3 Learning algorithms for neuromorphic computation 6
1.3.1 Deep learning for neuromorphic hardware 7
1.3.2 Reservoir computing for neuromorphic hardware 7

1.4 Thesis overview . 8
1.5 Used sources . 9
1.6 Research reproducibility . 9

2 Dynap-se Neuromorphic Microchips 11
2.1 Dynap-se board . 11

2.1.1 On-chip neurons . 12
2.1.2 On-chip neural networks . 12

2.2 Conducting numerical experiments on Dynap-se 13
2.2.1 A general routine for performing numerical experiments 13
2.2.2 Practical implementation of the routine 15

3 Slowing down Neuronal Dynamics by Modifying Properties of Individual Neurons 17
3.1 Heuristics of parameter selection . 17
3.2 Numerical experiments . 19

3.2.1 Experiment setup: baseline reservoir and tuned reservoir 19
3.2.2 The Pulse experiment . 20
3.2.3 The Pulse-Chirp experiment . 21
3.2.4 The Ramp + Sine experiment . 23

4 Slowing down Neuronal Dynamics by Modifying the Reservoir Topology 27
4.1 Reservoir Transfer . 27

4.1.1 The teacher network . 27
4.1.2 The student network . 28
4.1.3 Transfer dynamics of the teacher network to the student network 28

vii

4.2 Training on-chip reservoir . 29
4.3 ECG monitoring experiment . 30

5 Conclusion 33

A Parameters Values 35
A.1 Default Parameters . 36
A.2 Tuned Parameters . 37
A.3 Reservoir responses in Ramp + Sine experiment 38

viii

List of Figures

2.1 The multi-score structure of a Dynap-se microchip [Moradi et al., 2017]. 11

3.1 Visualization of the reservoir responses driven by a Pulse input. The Pulse
input signals are visually illustrated with green vertical bars. For each of the
default and tuned reservoir, we randomly choose 100 neurons and plot their neu-
ronal responses (exponentially smoothed spikes) against time. Left: responses of
neurons from the default reservoir. Right: responses of neurons from the tuned
reservoir. 20

3.2 Visualization of three repetitions of input pulses and their target chirp signals.
The pipeline of the Pulse-Chirp experiment is to (i) drive a reservoir with the
input spike train (green vertical bars) and (ii) linearly map reservoir responses to
the target chirp signal (red dashed line). For the linear map to work, the reservoir
responses need to attain a certain length of memory. 21

3.3 Visualization of the reservoir responses of a sequence of short pulses (0.5 sec-
onds) gapped by long periods of silence (3 seconds). The sequence of pulses is
visually illustrated with green vertical bars. For each of the default and tuned
reservoir, we randomly choose 100 neurons and plot their neuronal responses
(exponentially smoothed spikes) against time. Left: responses of the default
reservoir. Right: responses of the tuned reservoir. 22

3.4 Training and testing results of the Pulse-Chirp regression task using the de-
fault and the tuned reservoir. Figures in the first column are training (first row)
and testing (second row) results of a default reservoir; in a similar layout, figures
in the second column are training and testing results of a tuned reservoir. The
input sequences of spikes are illustrated with Green vertical bars; the target chirp
signal is shown in red, and the predictions of the target chirp signal (linearly read
out from reservoir) are in blue. Numbers inset are the mean square errors (MSEs)
for training or testing datasets. 23

3.5 The Ramp + Sine and Sine signals and their respective converted input spike
trains. The green vertical bars indicate the spikes which are assumed to be gen-
erated by an excitatory input neuron and the red vertical bar indicate the spikes
which are assumed to be generated by an inhibitory input neuron. Left panel:
the converted spike train from the Ramp + Sine signal. Right panel: the con-
verted spike train from the Sine. 24

ix

3.6 Training and testing results of the Sine-Ramp classification task using the de-
fault and the tuned reservoir. Figures in the first column are training (first row)
and testing (second row) results of a default reservoir; in a similar layout, figures
in the second column are training and testing results of a tuned reservoir. The
thick red line and the thick green line at the y-axis 1 or 0 represent the regres-
sion targets for Ramp+Sine and Sine, respectively. The orange dots represent
the predicted score for Ramp+Sine, and the green dots represent the predicted
score for Sine. Numbers inset are predicted accuracies for training or testing
datasets, where the accuracy is defined as the ratio of the number of corrected
predicted bins (each bin lasts for 0.01 seconds). 25

4.1 Two patterns of heartbeats in an ECG signal. Left panel: a normal heartbeat.
Right panel: a PVC heart beat. 30

A.1 Visualization of the reservoir responses when driven by input signal from Ramp
+ Sine experiment. For each of the default and tuned reservoir, we randomly
choose 100 neurons and plot their neuronal responses (exponentially smoothed
spikes) against time. Left: responses of the default reservoir. Right: responses
of the tuned reservoir. 38

x

List of Tables

4.1 PVC detection results on testing data . 32

A.1 The default parameters of Dynap-se. These parameters can be configured by
pressing “set default spiking biases” button on the GUI of Dynapse. 36

A.2 The tuned parameters of Dynap-se. Compared to the default parameters in Table
A.1, the modified ones are marked in red. 37

xi

Chapter 1

Introduction

Computers are ubiquitous in our world, from heavy data crunchers such as supercomputers to
wearable devices such as smartwatches. Modern computers have equipped humans with un-
precedented ability to process information in ways unimaginable when they were first widely
available a few decades ago. Indeed, even today’s cell phones have more computational power
than computers used in the spaceflight Apollo 11 [Kaku, 2012, Chapter 1], which brought two
astronauts to the moon and took them back. With these dazzling advances in computer tech-
nologies, we are conditioned to expect that every few years, new generations of computers will
always be much faster, smaller, and cheaper.

Contrary to this accustomed expectation, however, evidence has shown that the computation
power of commonly used von Neumann-type computers [von Neumann, 1945] will eventually
reach a fundamental physical limit. This is due to the combined effects of the imminent end
of Moore’s law [Kish, 2002, Cavin et al., 2012, Waldrop, 2016], the massive energy demands
of transistors after the breakdown of Dennard’s scaling [Dennard et al., 1974], and the com-
munication bottleneck between central processing units (CPUs) and memory known as the von
Neumann bottleneck [Backus, 1978]. Once these ceilings are reached, the technological ad-
vances of today’s computers will inevitably flatten out. Hence, there is a compelling need for
rethinking computation with paradigms other than the von Neumann architecture.

Complementary to von Neumann architecture, the neuromorphic computation paradigm [Mead,
1990] offers one promising route toward designing high-performance and energy-efficient com-
puting devices. Using brain circuits as a source for guidance, neuromorphic systems have a few
important advantages when compared to von Neumann systems. Among them, the primary one
is the former’s superior energy efficiency. Whilst von Neumann systems have CPUs separated
from memory components, neuromorphic systems have these elements co-localized. For ex-
ample, circuit-based synapses on neuromorphic hardware are both the sites for storing memory
and for performing computation [Indiveri and Liu, 2015, Qiao and Indiveri, 2017]. These co-
localized components effectively decrease the energy consumption induced by memory transfer.
For this reason, neuromorphic systems are ideal candidates for wearable devices [Zbrzeski et al.,
2016], brain-machine interface modules [Shaikh et al., 2019], speech processing [Braun and Liu,
2019], mobile robot [Kreiser et al., 2018], and internet of things (IoT) [Gao et al., 2019] applica-
tions, where low energy consumption is highly desirable [Birmingham et al., 2014, Indiveri and
Liu, 2015, Furber, 2016].

1

Despite their notable energy efficiency advantages, most of the neuromorphic devices have
not stepped far out of a few pioneering laboratories and industrial research groups. This situation
particularly applies to analog neuromorphic hardware, which exhibits a few challenging material
properties hindering them from practical applications. These challenging properties include:

• Device mismatch: Due to fabrication imperfections, analog circuits tend to exhibit vari-
abilities and inhomogeneities [Qiao et al., 2015].

• Low bit parameter values: Unlike those of software simulations, programmable parameters
of analog neuromorphic hardware usually have bounded ranges, limited resolutions, and
low precisions [Chicca et al., 2014]. Additionally, oftentimes parameters need to be set
globally to a population of neurons but not on the individual neuron level [Moradi et al.,
2017].

• Timescale mismatch: Dynamics of analog systems tend to be too fast to process real-time
input signals [Chicca et al., 2014].

Among these difficulties, the timescale mismatch problem is particularly troublesome. To
be successfully used in application domains such as wearable biosignal monitoring tasks, neu-
romorphic systems need to have slow timescales which are comparable to those of biological
signals. Only in this way can the information contained in input signals be synchronized and
integrated using the hardware in real-time. This slow timescale requirement, however, cannot
be easily attained with current analog neuromorphic technologies [Chicca et al., 2014]. Many
neuromorphic systems, therefore, use accelerated timescales. Although these accelerated devices
are ideal for simulations that take a very long time in biological terms [Schemmel et al., 2007],
they are unsuitable for real-time signal processing tasks.

Written under the NeuRAM3 EU Horizon 2020 project1, this thesis aims to provide a few
working solutions that alleviate the above-mentioned limited timescale problem exhibits by an
real-time analog neuromorphic device named Dynap-se [Moradi et al., 2017] for real-time signal
processing tasks. In this introduction chapter, we first provide an overview of the landscape of
neuromorphic hardware. We then review some fundamental computational neuroscience and
supervised machine learning notions. Based on these notions, we take an overview of common
approaches used to configure neuromorphic devices. The structure, contributions, used sources,
and research reproducibility of this thesis are discussed at the end of this chapter.

1.1 Neuromorphic computing
The term neuromorphic computation, coined by Carver Mead [Mead, 1990], refers to the use of
electronic circuits that emulates biological nervous systems to implement computational mecha-
nisms. In this section, we present a short overview of different types of neuromorphic hardware.

Neuromorphic systems can be divided into different categories based on different criteria.
Izeboudjen et al. [2014] provided an overview of the taxonomies of neuromorphic systems. De-
spite the varieties of taxonomies, the most common classification criterion is based on the sys-
tems’ implementation types, i.e., the types of signals processed in circuits. Using this criterion,

1http://www.neuram3.eu/

2

http://www.neuram3.eu/

we can divide neuromorphic hardware into three broad categories: analog, digital, and mixed
analog/digital.

Digital neuromorphic hardware share a few characteristics of the “conventional” von Neumann-
type computers: they use digital transistors to implement boolean-logic gates (such as AND, OR,
and NOT), operate with discrete values, and usually employ clocks for synchronization in cir-
cuits. Different from conventional computers, however, digital neuromorphic systems are specif-
ically designed to simulate large-scale spiking neural networks by mimicking their biological
functionalities. Due to their specializations, circuits on digital neuromorphic hardware consume
far lower energy when compared to conventional computers. Additionally, thanks to their digi-
tal nature, these neuromorphic systems usually have high precisions and replicable arithmetics,
leading to greater user accessibility and fewer computational challenges than analog implemen-
tations. However, numerical stabilities of digital neuromorphic systems do not come without a
cost: They tend to consume more energy than analog neuromorphic devices [Indiveri and Liu,
2015]. Examples of digital neuromorphic hardware include TrueNorth [Merolla et al., 2014],
SpiNNaker [Painkras et al., 2012], and Loihi [Davies et al., 2018].

Analog neuromorphic implementation is another variant of neuromorphic hardware. In fact,
the term “neuromorphic,” when originally defined [Mead, 1990], refers to analog neuromorphic
systems. These systems use physical characteristics of analog circuits [Andreou and Boahen,
1996] to mimic the behaviors of neurons, synapses, and other structures [Liu et al., 2002]. To
emulate these behaviors, sub-threshold analog circuits require fewer transistors than their dig-
ital counterparts [Indiveri and Liu, 2015]. On-chip spiking neurons on analog neuromorphic
hardware are typically asynchronous, acting as independent processors without a central clock.
These properties make analog systems closely resemble real biological systems. However, ana-
log systems tend to be noisy, raising challenges for computational algorithms. For example,
when sending all neurons in a population constant injection currents, the spiking frequencies of
individual neurons tend to vary. Ning et al. [2015] reported 9.4% variations of spike-frequency
variations under the constant injection currents when using the ROLLS processor. Although the
variation coefficient 9.4% is considered to be low when compared to other neuromorphic hard-
ware [Ning et al., 2015], this variability still rules out a large portion of state-of-the-art machine
learning algorithms, which are based on floating-point precision operations.

Analog neuromorphic hardware can be further categorized into two classes: real-time and
accelerated [Pfeil, 2015, Chapter 1]. In real-time hardware, synapses and neurons operate in
timescales similar to their biological counterparts. These systems are usually designed for
applications in bio-signal processing, prosthetics, and robotics tasks. In accelerated systems,
timescales of the hardware network are usually 103 to 104 faster than their biological counter-
parts [Indiveri and Liu, 2015]. These systems are suited for applications that take a very long
time in biological terms [Indiveri and Liu, 2015], e.g., modeling several years of childhood devel-
opment [Furber, 2016]. Examples of accelerated analog neuromorphic hardware include Spikey
[Briiderle et al., 2010] and BrainScaleS [Schemmel et al., 2012]. Examples of real-time analog
neuromorphic devices include ROLLS [Ning et al., 2015] and Dynap-se [Moradi et al., 2017].

Besides digital and analog neuromorphic systems, there exist analog/digital mixed systems.
Examples of these systems include Neurogrid [Benjamin et al., 2014] and Braindrop [Neckar
et al., 2019].

Our working device used in this thesis is Dynap-se [Moradi et al., 2017], an analog and

3

real-time neuromorphic device. We will introduce its features in details in Chapter 2.

1.2 Recurrent network of spiking neurons
In the previous section, we have reviewed different types of neuromorphic hardware. Although
these types of hardware are designed based on different principles, they all perform computation
with on-chip spiking neural networks. To work with neuromorphic hardware, it is therefore
necessary to understand a few basic notions related to spiking neural networks. In this section,
we briefly review the leaky integrate-and-fire neuron model, which is arguably the simplest form
of a neuron model. We then explain how to connect these neurons into a recurrent neural network.
Our presentation in this section mainly follows [Gerstner et al., 2014, Chapter 1] and [Nicola and
Clopath, 2017].

1.2.1 LIF neurons
The dynamics of a leaky integrate-and-fire (LIF) [Lapicque, 1907] neuron with index by i at the
time t can be formulated by

τv
dvi
dt

= − [vi(t)− vrest] +RIi(t) (1.1)

If vi(t) > ϑ,

then vi(t) := vrest, (1.2)

where vi is the membrane potential of the neuron, Ii is the input current of the neuron, R is the
membrane resistance, τv is the membrane time constant, vrest is the resting potential, and ϑ is
the firing threshold. Equation 1.1 describes the leaky integrator dynamics in the sub-threshold
regime of a neuron, i.e., in the time periods between two consecutive spikes. Equation 1.2 defines
a reset mechanism: Whenever the membrane potential vi crosses the firing threshold ϑ, vi is set
to be the resting potential vrest.

The spike train produced by the neuron i at the time t can be denoted by

si(t) =
∑
tif

δ(t− tif), (1.3)

where tif are the firing times of the neuron i and δ(·) is a Dirac delta function.

1.2.2 Recurrent network of LIF neurons
Following [Nicola and Clopath, 2017], we now formalize how LIF neurons communicate with
each other via their spike induced synaptic currents, giving rise to a recurrent neural network
(RNN). The dynamics of synaptic currents ri induced by a spike train si of neuron i can be
written as

τr
dri(t)

dt
= −ri(t) + si(t), (1.4)

4

where τr is the synaptic time constant.
For a post-synaptic neuron indexed by i, each pre-synaptic neuron indexed by j contributes

its spike induced synaptic currents rj to Ii. Assuming that these contributions are linear, we write
the synaptic currents Ii(t) as

Ii(t) :=
∑
j

Wijrj(t) + I0 (1.5)

where Wij are real values specifying the magnitude of the spike induced currents arriving at
neuron i from neuron j and I0 is a constant current set near or at the rheobase (threshold to
spiking) value as used in [Nicola and Clopath, 2017].

Plugging Ii(t) in Equation 1.5 back to Equation 1.1, we see the sub-threshold dynamics of
the neuron i under the influence of its pre-synaptic neurons can be re-written as

τv
dvi
dt

= − [vi(t)− vrest] +R
∑
j

Wijrj(t) +RI0. (1.6)

To take the reset mechanism into account, we add an additional term in Equation 1.6 to
specify the full dynamics of membrane potential of a LIF neuron:

τv
dvi
dt

= − [vi(t)− vrest] +R
∑
j

Wijrj(t) +RI0 − θsi(t). (1.7)

where θ := ϑ− vrest is the difference between spiking threshold ϑ and reset potential vrest.
Using more compact matrix notations, assuming that there are N LIF neurons contributing

to the recurrent dynamics, we can write the network as

τvv̇ = − [v(t)− vrest] +RWr(t) +RI0 − θs(t),
τrṙ = −r(t) + s(t),

(1.8)

where v̇, ṙ,v, r, and s are all N -dimensional vectors whose i-th entries are dvi
dt

, dri
dt

, vi, ri, and si;
vrest is a vector with all entries being vrest and I0 is a vector with all entries being I0; W ∈ RN×N

is a recurrent connectivity matrix whose (i, j)-th entry is Wij .
Note that, the network in Equation 1.8 is an autonomous system where no external input is

defined. To deal with input-driven systems, we assume that at each time t, we are given an ex-
ternal input signal taking values as a m-dimensional real-valued vector u. With this assumption,
we add another term in Equation 1.8 to take external driving signal into consideration

τvv̇ = − [v(t)− vrest] + Winu(t) +RWr(t) +RI0 − θs(t),
τrṙ = −r(t) + s(t),

(1.9)

where Win ∈ RN×m is an input weight matrix.
To reduce the number of parameters in Equation 1.9 and make things simpler, we make

additional assumption that vrest = 0 and R = 1 as done in [Nicola and Clopath, 2017] and
[Neftci et al., 2019]. This reduces the RNN formalism into

5

τvv̇ = −v(t) + Winu(t) + Wr(t) + I0 − θs(t),
τrṙ = −r(t) + s(t).

(1.10)

Equation 1.10 specifies a RNN with LIF neurons. We remark that, however, this formulation
is by no means the only possible version. In fact, most of the existing RNN architectures of LIF
neurons (e.g., [Huh and Sejnowski, 2018, Bellec et al., 2018, Neftci et al., 2019]) use slightly
different formalisms. For example, Neftci et al. [2019] use recurrent weights that act on spike
trains of pre-synaptic neurons rather than on spike-induced currents of pre-synaptic neurons as
we did in Equation 1.10.

1.2.3 Supervised training for RNN of LIF neurons
We now describe how to set up RNNs for supervised, input-output function approximation tasks.
For such tasks, oftentimes we are given a collection of time-dependent input signals {u(t)}t
and desired output signals {y(t)}t, where u(t) ∈ Rm and y(t) ∈ Rk for some m and k ∈ N.
In the training phase, our goal is to configure a RNN such that it produces {y(t)}t as close as
possible (up to some regularization effects) whenever the input signal {u(t)}t is given. One way
to achieve this with our RNN specified in Equation 1.10 is to invest an additional output matrix
Wout ∈ Rk×N , such that the following approximation

y(t) ≈Woutr(t) (1.11)

holds under some metric for all t.
To achieve this goal, we need to optimize the parameters Win, W, and Wout under some met-

rics. The recent standard practice for this optimization task is to use back-propagation-through-
time algorithms [Rumelhart et al., 1986] with variants of surrogate gradients [Esser et al., 2016,
Bellec et al., 2018, Zenke and Ganguli, 2018, Shrestha and Orchard, 2018]. A recent review for
surrogate gradients training methods for spiking neural networks is given by Neftci et al. [2019].

Although surrogate gradients training methods for spiking networks have achieved state-of-
the-art results with software simulations, when it comes to neuromorphic devices, they may not
be applicable for one device or another. In the next section, we provide a brief overview of the
applicability of learning algorithms of spiking neural networks for neuromorphic devices.

1.3 Learning algorithms for neuromorphic computation
We have already introduced neuromorphic hardware as well as spiking neural networks as a
computation paradigm deployable to neuromorphic hardware. In this section, we consider the
strategies for optimizing parameters of neural networks on neuromorphic hardware.

Since different types of neuromorphic hardware have different constraints, the choice of
learning algorithms for on-chip neural networks heavily depends on the device one uses. By
and large, learning algorithms for neural networks on neuromorphic hardware are mainly ad-
vancing along two lines of investigations [He et al., 2019]: a deep learning [Goodfellow et al.,
2016] approach and a reservoir computing [Jaeger, 2001, Maass et al., 2002] approach.

6

1.3.1 Deep learning for neuromorphic hardware

As deep neural networks (DNNs) have achieved highly remarkable results on important machine
learning tasks such as image classification [He et al., 2016], machine translation [Bahdanau et al.,
2015], and speech processing [Amodei et al., 2016], numerous studies are devoted to transfer-
ring the success of conventional-computer-based deep learning algorithms to their neuromorphic
hardware counterparts. As observed by Liu et al. [2018], most research in this line of investi-
gation leverages a pre-training approach. That is, one first trains a DNN of artificial neurons or
spiking neurons on a conventional computer with standard techniques and then maps the trained
parameters to neuromorphic hardware. Since the parameter mapping needs relatively high pre-
cision, most of the work in this approach uses digital hardware as the neuromorphic platform.
For example, Jin et al. [2010] and Stromatias et al. [2015] use SpiNNaker; [Esser et al., 2015,
2016] use TrueNorth. More recently, Schmitt et al. [2017] show that a similar approach works
for BrainScaleS analog neuromorphic system. The idea is to first roughly map the parameters
estimated from DNN to BrainScaleS hardware, and then iteratively fine-tune the parameters in
a “hardware in the loop” fashion. This is realized with the help of an interface between the
conventional computer and the BrainScaleS hardware.

Although the deep learning paradigm has been empirically proven to be highly successful for
many neuromorphic devices, there are a few reasons why it is not immediately suitable for our
Dyanp-se hardware. For one, the learned parameters of DNN cannot be mapped to Dynap-se
conveniently as the hardware only has limited parameter resolution. Additionally, the variability
of on-chip neurons may cripple the mapped DNN architecture since the performance of DNN
relies on highly precise and well-orchestrated parameters. What is more, a hardware-in-the-loop
method similar to Schmitt et al. [2017] cannot be realized easily on Dynap-se2.

1.3.2 Reservoir computing for neuromorphic hardware

The Reservoir Computing paradigm [Jaeger, 2001, Maass et al., 2002] offers a second route
for training recurrent spiking neural networks on neuromorphic systems. Concretely, the reser-
voir computing paradigm is usually realized with the following steps [Jaeger et al., 2007]. We
introduce these steps by using our RNN of Equation 1.10 as a concrete example.

1. Set up a random RNN. In our example of RNN of LIF neurons specified in Equation 1.10,
this amounts to randomly create Win and W up to some hyperparameters which govern
the randomness of these matrices.

2. Drive the RNN with input signals to harvest reservoir states, i.e., temporal features pro-
duced by recurrent neurons. In our RNN of LIF neuron example, this can be practically
done by choosing a sequence of discretized time {tk} and collect s(tk) for all tk by using
Equation 1.10. The collected spike train {s(tk}) can be further smoothed into {r(tk)} by
using an exponentially decay filter specified in Equation 1.10. Those {r(tk)} can be seen
as high-dimensional features of the input signal {u(tk)}.

2That being said, a recently released front-end interface of Dynap-se named CortexControl (https://
ai-ctx.gitlab.io/ctxctl/primer.html) brings some promises to this approach.

7

https://ai-ctx.gitlab.io/ctxctl/primer.html
https://ai-ctx.gitlab.io/ctxctl/primer.html

3. Read out the desired outputs by linearly combining the reservoir states. In our RNN exam-
ple, we can estimate an output matrix Wout which linearly combines reservoir states r(tk)
into the desired target signal y(tk) for all tk. A commonly used approach to realize this is
to solve Equation 1.11 via a ridge regression

Wout = YΦ>
(
ΦΦ> + αI

)−1
, (1.12)

where α is a Tikhonov regularization coefficient, Φ is a matrix whose columns are r(tk), Y
is a matrix whose columns are those target y(tk), and I is an identity matrix [Lukoševičius,
2012].

Unlike the deep-learning based pre-training approach, the reservoir computing approach is
usually directly carried out using neuromorphic hardware. Compared to DNNs, the number of
parameters needed to be estimated for the reservoir computing approach is much smaller: The
recurrent weights Win and W are fixed throughout the training and testing phase; only Wout

needs to be estimated. This greatly simplifies the optimization procedure. More importantly,
since Win and W are random matrices, the inherent variability of on-chip neurons of analog
hardware can be seen as an advantage rather than a shortcoming for deploying the reservoir com-
puting pipeline. For this reason, reservoir computing has been perceived as a suitable paradigm
for analog neuromorphic computation.

1.4 Thesis overview

So far we have reviewed various notions related to neuromorphic computation. Building upon
these notions, this thesis is structured as follows. Chapter 2 gives an overview of our neuromor-
phic hardware, the Dynap-se board. We provide a general routine for performing experiments on
Dynap-se. Several issues related to the practical implementations of the routine are discussed.

Chapter 3 presents two parameter selection heuristics that we empirically found to be useful.
By selecting a few time constants for ordinary differential equations which characterize the dy-
namics of non-chip neurons as well as the synapse types of neurons, we nudge the on-chip neural
network toward having a slower timescale. We conducted a few synthetic experiments to probe
the dynamics of on-chip neural networks. These experiments show that the heuristically tuned
parameters yield slower neural dynamics when compared to untuned ones.

Chapter 4 introduces the reservoir transfer paradigm. This scheme “mirrors” the dynamic
properties of a well-performing artificial recurrent network (optimized on a conventional com-
puter) to spiking recurrent networks deployed on a Dynap-se neuromorphic microchip. We con-
ducted experiments using ECG heartbeat classification tasks to test the proposed method. For
the ECG classification task, the empirical performance achieved by Dynap-se hardware favor-
ably approaches the performance achieved by software simulations.

We conclude this thesis with Chapter 5. Limitations of the current work are summarized and
a few lines of future investigations are outlined.

8

1.5 Used sources
This thesis partially uses results reported previously. Some parts of Chapter 2 and Chapter 3 are
from my independent study report [Liu, 2018] completed in Spring 2018. Chapter 4 is an ex-
tended version of the paper [He et al., 2019] and the contributions of the authors are documented
at the beginning of the Chapter 4.

In numerical experiments of this thesis, we use DYNAPSETools3 software package. Devel-
oped by Cattaneo [2018], the software package is a collection of python classes and modules for
the purpose of processing spike events produced by Dynap-se.

1.6 Research reproducibility
The code for replicating numerical experiments reported in Chapter 3 and Chapter 4 together
with their respective used data collected from Dynap-se are available on the GitHub4.

3https://sanfans.github.io/DYNAPSETools
4https://github.com/liutianlin0121/msc_thesis_code

9

https://sanfans.github.io/DYNAPSETools
https://github.com/liutianlin0121/msc_thesis_code

10

Chapter 2

Dynap-se Neuromorphic Microchips

In this chapter, we introduce the Dynap-se hardware [Moradi et al., 2017], which is our work-
ing device used throughout this thesis. Dynap-se is the acronym for Dynamic Neuromorphic
Asynchronous Processor in a Scalable variant. The name indicates that the hardware is able to
perform computations in an asynchronous fashion and is scalable to large neural network archi-
tectures. In this chapter, we first introduce the general feature of Dynap-se hardware. We then
provide a pipeline for conducting experiments using Dynap-se. Last, we describe how do we
concretely implement this pipeline.

2.1 Dynap-se board
The Dynap-se board that we are using contains four chips, each chip mainly contains four inter-
connected blocks, which are called cores. The schematic layout of these four cores (Core 0 to
Core 3) is shown in Figure 2.1. Each core in a chip contains 256 neurons.

Core 0

Core 1

Core 2

Core 3

FIFO

FIFO

F
IF

O
M

B
U

F

F
IF

O
M

B
U

FLUT

LUT

LUT

LUT

D
e
c
o
d

e
r

D
e
c
o
d

e
r

Input
Interface

BiasGen-1 BiasGen-2R1 + R2 + R3

Figure 2.1: The multi-score structure of a Dynap-se microchip [Moradi et al., 2017].

Besides four main blocks, Core 0 to Core 3, there are other blocks such as BiasGen-1,
BiasGen-2, R1, R2, and R3 as shown in Figure 2.1. These blocks are placed to govern the

11

on-chip neural dynamics, e.g., set up connectivity topologies, neuron parameters, and synapse
parameters.

On a conventional computer, Dynap-se can be configured with the support of cAER1, which
is an open-source event-based processing framework written in C and C++. The cAER frame-
work provides a collection of modules for configuring and monitoring on-chip neural networks.
It has a convenient graphical user interface2 (GUI). Among others, the functionalities of the GUI
of cAER include (i) setting parameters for on-chip neurons, (ii) loading neural network archi-
tectures, (iii) sending input spike-based stimuli, and (iv) recording the output spike events. The
functionalities of these GUI-based operations will be introduced in our summarized experiment
pipeline in Section 2.2.

2.1.1 On-chip neurons

The on-chip neurons implemented on Dynap-se are designed to emulate neurons of Adaptive
Exponential Integrate-and-Fire (AdEx) model [Brette and Gerstner, 2005], which is a general-
ization of the leaky integrate-and-fire model. Properties of on-chip neurons can be tuned by a
programmable bias-generator, which contains 25 parameters such as injection current level, re-
fractory period length, time constants, and synaptic efficacy. A detailed list of these parameters
can be found in the Dynap-se user guide [IniLabs, 2017]. The values of these parameters have
low-bit resolutions. As an example, the refractory period of a neuron can only be specified as
a tuple of coarse and fine values, where a coarse value can be chosen as an integer from 0 to 7,
and a fine value can be chosen as an integer from 0 to 255. In addition, these parameters can
only be set globally for each core but not for an individual neuron. Due to device mismatch,
effective values of these parameters may vary across different neurons. As a result, although all
neurons within a core share the same parameter values, every individual neuron exhibits different
behavior [IniLabs, 2017]. In addition, only neurons’ spike trains can be recorded by Dynap-se.
Neurons’ state variables such as currents and membrane potentials, however, cannot be recorded.

2.1.2 On-chip neural networks

So far we have introduced the dynamics of single neurons on Dynap-se. For computational tasks,
however, oftentimes we wish to connect individual neurons into a neural network on Dynap-
se. To define a topology (connectivity pattern) of an on-chip neural network, we need to use
the NetParser module of cAER3 to specify the connections. To understand the workflow of
configuring an on-chip neural network, we first need to explain the difference between “virtual”
and “real” neurons on Dynap-se.

To process a sequence of input spike train with a population of neurons, we first send this
spike train to its designated receivers in the neuron population. Conceptually, these input spikes
can be seen as the neuronal responses produced by some external neurons which will not partic-
ipate in recurrent connections once their produced spikes leave them. In Dynap-se, such source

1 https://inivation.com/support/software/caer/
2https://github.com/inivation/caerctl-gui-javafx
3https://github.com/inivation/caer

12

https://inivation.com/support/software/caer/
https://github.com/inivation/caerctl-gui-javafx
https://github.com/inivation/caer

neurons are referred to as “virtual neurons”. A virtual neuron cannot send spikes to another
virtual neuron, reflecting their “input” nature.

We can use such virtual neurons to send input spikes to “real neurons,” which are neurons that
can communicate with each other via synaptic connections. After the real neurons receive the
input spikes from virtual neurons, they will process the spikes and potentially propagate newly
generated spikes to other real neurons with which they connect, depending on the network topol-
ogy. For each synaptic connection, we can specify the connection efficacy and synapse type.
The efficacy of a synaptic connection needs to be defined in terms of content-addressable mem-
ory (CAM). For each neuron, 64 CAMs in total are allowed for fan-in and fan-out connections.
Each synapse can be realized with four connection types: slow inhibitory, fast inhibitory, slow
excitatory, and fast excitatory. Excitatory synapses increase the membrane potential of post-
synaptic neurons while inhibitory synapses lower membrane potential of postsynaptic neurons.
“Fast” synapses on Dynap-se emulate synapses with AMPA receptors, while “slow” synapses on
Dynap-se emulate synapses with NMDA receptors. These synapses are called “fast” and “slow”
because one key difference between synapses with NMDA receptor and those with AMPA re-
ceptors is that the former enable membrane potential to have slower onsets and have decays that
last longer [Nestler et al., 2008, Chapter 5] than the latter.

With the network topology, synapse efficacies, and synapse type chosen, we are able to con-
figure on-chip neural networks by uploading a .txt file in the NetParser module. The specific
format of this .txt file will be introduced in Section 2.2.

2.2 Conducting numerical experiments on Dynap-se
In this section, we take a technical overview of the general routine of using Dynap-se for com-
putation. We then introduce our working solutions for a few key steps in the routine.

2.2.1 A general routine for performing numerical experiments

Step 1: Define the input spike train.
To start the experiment, one needs to determine the input patterns. The input pattern might
be continuous digital signals or discontinuous spike trains. If the input signals are con-
tinuous (e.g., sine waves), they have to be converted into spikes first via a spike-encoding
mechanism.

Step 2: Write spikes into a Dynap-se readable format
With the input spike data, we proceed to define the sender (source neuron) and receiver
(target neuron) of the input spikes. As we have introduced earlier, the senders of such input
spikes are virtual neurons. To send spikes from virtual neurons to real neurons, one needs
to specify 2 numbers. The first number is the sender-receiver correspondence, which is a
number encoded by three variables: (i) the virtual neuron ID, (ii) the virtual chip ID, and
(iii) the destination core(s); the second number is the waiting time between the previous
spike and the current spike in the unit of 90 ISI-Bases, where one ISI-Base is 1/90 Mhz
= 11.11 nanoseconds. The first number “sender-receiver correspondence” deserves more

13

explanations. To encode these three variables, we first convert them individually into a
binary number, then concatenate into a long string, and finally convert the string of binary
numbers back into to a single decimal number. For a concrete example, suppose we want
to send a spike from the 21st neuron (virtual neuron ID = 20) on the first virtual chip
(virtual chip ID = 00) to all of the 4 cores of chip 0 that contain real neurons. The coding
mechanism works as follows. First consider the virtual neuron ID – it is 10100 because
10100 is the binary conversion of 20; next consider the virtual chip ID – it is just 00;
third consider the receiver – they are cores 0, 1, 2, and 3, so they can be hot coded into
1111, where each 1 is an indication that one core has been selected. Putting these 3
variables together, we have 10100001111, which will be treated as a binary number and
will be converted into a decimal number 1295. The number 1295 is the sender-receiver
correspondence. Note that the receivers are not individual neurons, but all neurons in one
core or multiple cores.
The final output of this step is a list of pairs (E0, T0), (E1, T1), · · · , (EN , TN), where each
Ei for i ∈ {0, · · · , N} and N ∈ N is a sender-receiver correspondence and each Ti for
i ∈ {0, · · · , N} and N ∈ N is the waiting time in the unit of 90 ISI-Bases. Such a
list should be written into a .txt file, one pair per line, such that they can be fed into
Dynap-se using the FPGA-SpikeGen module in the GUI of cAER.

Step 3: Choose neural network parameters
Having the input spike trains written in a Dynap-se readable format, we are ready to send
them into Dynap-se. Before doing that, however, we need to specify the parameters of the
on-chip neural network. Such parameters include neuron parameters, synapse parameters,
and network topology. While neuron parameters and synapse parameters can be easily
specified by using the GUI of cAER, the configuration of network topology needs more
explanation. For synapse that connects two neurons, we need to provide four pieces of
information in the .txt file: (i) the pre-synaptic neuron address, (ii) the connection type,
(iii) the CAM slots, and (iv) the post-synaptic neuron address. An address for a pre-
synaptic or post-synaptic neuron has three elements: a chip ID, a core ID, and a neuron ID.
For example, U00-C01-N002 is the address of the neuron 2 of core 1 of chip 0. Dynap-
se contains four connection-type, slow inhibitory, fast inhibitory, slow excitatory, and fast
excitatory, which are coded by numbers 0, 1, 2, and 3 respectively. The values of CAM
slots can be chosen from 1 to 64. As a concrete example, suppose we wish to connect a
pre-synaptic neuron, which is the neuron 2 of core 1 of chip 0, to a post-synaptic neuron,
which is the neuron 4 of core 3 of chip 2 with a slow inhibitory synapse taking 5 CAMs,
we need to write

U00-C01-N002︸ ︷︷ ︸
pre-synaptic neuron ID

-> 0︸︷︷︸
synapse

type

- 5︸︷︷︸
CAM
slots

-U02-C03-N004︸ ︷︷ ︸
post-synaptic neuron ID

To configure a network, a list of these connectivities needs to be provided.

Step 4: Send input spikes and collect output spikes
Having the neural network model ready in the previous step, in this step, we send input
spikes and collect output spikes using the GUI of cAER software. We first read the .txt

14

file for input spikes and send it into Dynap-se. Next, we collect the output spike-events,
which are in the format of Address Event DATa (AEDAT)4.

Step 5: Use the output spikes for neural network training
With the collected output spikes, we can visualize and analyze them on a digital computer.
A usual recipe is to first post-process the collected spikes into continuous-valued signals
and then perform pattern classification or regression tasks using the smoothed spike data.
Our collaborators in Zurich have developed a collection of spike-events processing pro-
grams5, which provides a convenient interface for analyzing spike data collected from
Dynap-se.

2.2.2 Practical implementation of the routine
We have already summarized a general pipeline for conducting experiments using Dynap-se.
Yet, to realize this pipeline, we need to be more concrete at each step. Here we spell out a few
working solutions we used in our experiments.

In Step 1 of the experiment routine, sometimes we need to convert continuous signals to input
spike trains. Throughout this work, we use a simple method to do the signal-to-spike conversion:
If the increase/decrease of a signal relative to the signal value corresponding to the time of its
previous spike is above a certain threshold, a spike is placed. We chose this conversion method
mainly due to its simplicity. There exists more sophisticated methods (e.g., [Schrauwen and Van
Campenhout, 2003] and [Eliasmith and Anderson, 2004, Chapter 2]).

The neural network parameters introduced in Step 3 are also subjected to users’ choice. Since
neuron parameters and network topologies are the main components of learning and adaptation
in neural networks, it is not surprising that different choices of parameters will influence the
optimality of experiment outcomes. Chapter 3 and 4 will be devoted to explaining our working
solutions to choose neuron parameters and network topologies.

Another subjective choice occurs in Step 5 of the experiment routine. To post-process the
collected spikes into continuous signals, throughout this work, we convolve the spikes with an
exponential decay kernel. That is, we add exponential tails to all spikes.

4https://inivation.com/support/software/fileformat/#aedat-3
5https://github.com/sanfans/DYNAPSETools

15

https://inivation.com/support/software/fileformat/#aedat-3
https://github.com/sanfans/DYNAPSETools

16

Chapter 3

Slowing down Neuronal Dynamics by
Modifying Properties of Individual
Neurons

In the previous chapter, we have introduced our Dynap-se device. For practitioners, Dynap-se
can be seen as an input-output device characterized by tunable parameters and on-chip neural
network architectures, producing output spikes whenever input spikes are given. The produced
spike representations can then be used for tasks such as pattern recognition. However, configur-
ing Dynap-se to produce practically useful spike representations is challenging due to its material
properties such as low bit resolution of tuning parameters, unobservable state variables, device
mismatch, and timescale mismatch. Amongst these challenges, the timescale mismatch issue
is prominent: The dynamics of on-chip neurons tend to be too fast to maintain relatively long
memory spans. In this chapter, we provide a few working solutions to alleviate this problem.
Concretely, we offer a few heuristics for tuning neuron and synapse parameters, which nudge
the neural networks toward having slower dynamics. We examine the neuronal dynamics char-
acterized by the tuned parameters with three numerical experiments: A Pulse experiment for
reservoir visualization, a Chirp regression task, and a Ramp + Sine pattern classification
task.

3.1 Heuristics of parameter selection
To configure time constants that govern the dynamics of on-chip neurons, we study the Differ-
ential Pair Integrator (DPI) circuits of Dynap-se, which are circuits that simulate synapses of
neurons [Chicca et al., 2014]. In essence, the response of a DPI can be modeled by a first-order
linear differential equation [Chicca et al., 2014]

τ
d

dt
Iout + Iout =

Ith

Iτ
Iin,

where Iout is the output of the circuits, i.e., the postsynaptic current of a neuron, Iin is the input
current to the synapse, Ith is a time constant, and τ := C UT

κIτ
is another time constant for C being

17

the circuit capacitance, UT being the thermal voltage [Liu et al., 2002, Chapter 2], κ being the
subthreshold slope factor, and Iτ being a tunable constant.

To slow down the dynamics of Iout given Iin, we aim to make
(
d
dt
Iout
)2 as small as possible.

This can be done by adjusting Iτ and Ith as tunable parameters and treat other parameters as fixed
constants. With some linear algebraic operations, we see

(
d

dt
Iout

)2

=

[
1

τ
(
Ith

Iτ
Iin − Iout)

]2
=

[
κIτ
CUT

(
Ith

Iτ
Iin − Iout)

]2
=

[
κ

CUT
(IthIin − IoutIτ)

]2
. (3.1)

To minimize (d
dt
Iout)

2 for fast synapses, Equation 3.1 motivates us to set Ith and Iτ to be the
smallest possible values on Dynap-se. In cAER software of Dynap-se, this is done by assigning
coarse and fine value of each parameter NDPDPIE THR F P (which characterizes Ith for fast
excitatory neurons), NDPDPII THR F P (which characterizes Ith for fast inhibitory neurons),
DPDPIE TAU F P (which characterizes Iτ for fast excitatory neurons) , and NDPDPII TAU F P
(which characterizes Iτ for fast inhibitory neurons) to be 0 and 7.

Heuristic 1
Set the coarse and fine value of DPDPIE THR F P to be 7 and 0, respectively.

Do the same setting for NDPDPII THR F P, DPDPIE TAU F P, and
DPDPII TAU F P.

We now introduce the second heuristic, which is about how to specify types of neuron
synapses. Intuitively, for the recurrent connections, we want the population of recurrent neurons
to act as a memory buffer, such that the characteristics of input signals will be slowly washed
out over time. Recall from Section 2.1.2 that, on Dynap-se, slow synapses emulate biological
synapses which enable membrane potential to have slow onsets and long decays. For this reason,
we chose slow synapses for reservoir neurons. Concretely, in the NetParser module of cAER, we
choose the connection-type IDs of synapses connecting pairs of recurrent neurons to be 0 or 2,
which correspond to slow inhibitory and slow excitatory synapses. We set fast synapses for input
connections, by choosing the connection-type IDs of synapses between input (virtual) neurons
and recurrent neurons to be 1 or 3 using NetParser module of cAER.

Heuristic 2
Use fast synapses for input connections.

Use slow synapses for recurrent (reservoir) connections.

18

With these parameters of Dynap-se tuned based on these two heuristics, we now proceed to
test the effects of the tuned parameters.

3.2 Numerical experiments

We aim to probe the dynamics of on-chip neurons which are characterized by different parame-
ters via numerical experiments. To evaluate the performance of our tuned parameters, we need
to set up the experiments such that the tuned parameters can be fairly compared to untuned ones.

3.2.1 Experiment setup: baseline reservoir and tuned reservoir

To examine whether the tuned parameters slow down the dynamics of neurons, we define a base-
line reservoir and a tuned reservoir, which share the same network topology but differ by neuron
and synapse parameters. This shared network topology for both baseline and tuned reservoirs is
described in more details below.

The shared reservoir topology The shared network topology we employed here is a topology
provided by Roberto Cattaneo, one of our main project collaborators in Zurich. This topology
loosely follows the one specified in [Maass et al., 2002, Appendix B]. More specifically, the
reservoir takes form as a population of 256 neurons, among which 80% are excitatory neurons
and 20% are inhibitory neurons, chosen randomly. By “excitatory neuron” or “inhibitory neu-
ron,” we mean that these neurons make excitatory or inhibitory synaptic connections with all
their respective post-synaptic neurons. We can index all neurons in the reservoir by their respec-
tive coordinates in the set {(x, y)} := {0, · · · , 15}×{0, · · · , 15}, where× denotes the cartesian
product. The connectivity structure is defined as follows. For a fixed excitatory neuron with
coordinate (x̃, ỹ) and for an arbitrary neuron with coordinate (x, y), the probability of existing
a synaptic connection between neuron with coordinate (x̃, ỹ) and neuron with coordinate (x, y)

is min
(
Cexi exp(− (x̃−x)2+(ỹ−y)2

(2λ2exi)
), 1
)

, where Cexi = 0.3 and λexi = 2. Similarly, for a fixed
inhibitary neuron with coordinate (x̂, ŷ) and for an arbitrary neuron with coordinate (x, y), the
connectivity probability is min

(
Cinh exp(− (x̂−x)2+(ŷ−y)2

(2λ2inh)
), 1
)

, where Cinh = λinh = 2.

We provide some remarks for this topology. Note that, for a fixed pre-synapse neuron, its con-
nection with a post-synapses neuron only depends on the coordinate of the post-synapses neuron,
and independent of the neuron type (excitatory or inhibitory) of the post-synapses neuron. This
implementation is consistent with Dale’s principle [Eccles et al., 1954], which states that all
synapses originating from the same presynaptic neuron perform the same chemical action at all
of its postsynaptic neurons, regardless of the identity of the postsynaptic neuron. However, we
notice that this implementation is not the same as what has been proposed in [Maass et al., 2002,
Appendix B], where different connection probabilities are assigned to excitatory-to-excitatory,
excitatory-to-inhibitory, inhibitory-to-excitatory, and inhibitory-to-inhibitory neuronal connec-
tivities.

19

Baseline reservoir The neurons in the default reservoir are characterized by the parameters
listed in Table A.1 in the Appendix, which can be configured by pressing the “set default bias”
button on the netParser interface of Dynap-se. As done in [Cattaneo, 2018], all neurons in the
baseline reservoir are set to be fast neurons. That is, all neurons make fast synaptic connections
with their respective post-synaptic neurons.

Tuned reservoir The neurons in the tuned reservoir are characterized by parameters modified
according to Heuristic 1 given in the previous section. The full list of tuned parameters can be
found in Table A.2 in the Appendix. In addition, all neurons in this reservoir are set to be slow
neurons according to the recommendation of Heuristic 2 given in the previous section. That is,
all neurons make slow synaptic connections with their respective post-synaptic neurons.

3.2.2 The Pulse experiment
In this experiment, we aim to visualize and examine the reservoir responses driven by simple
driving signals. To this end, we used a pulse of spikes as input to drive the reservoir. The
experiment lasts for 6.5 seconds. For the initial 0.5 seconds and last 5 seconds, there is no spike;
from 0.5 seconds to the 1.5 seconds, we sent a sequence of equally spaced spikes, where the
distance between two nearby spikes was fixed to be 0.001 seconds. After post-processing the
spike trains produced by reservoir neurons with an exponential-decay kernel, we display 100
randomly chosen neurons from default reservoir and tuned reservoir in Figure 3.1.

0.5 1.5 6.5
Time (sec)

0

10

20

S
m

o
ot

he
d

sp
ik

es

Default Reservoir

0.5 1.5 6.5
Time (sec)

0

50

100

Tuned Reservoir

Figure 3.1: Visualization of the reservoir responses driven by a Pulse input. The Pulse
input signals are visually illustrated with green vertical bars. For each of the default and tuned
reservoir, we randomly choose 100 neurons and plot their neuronal responses (exponentially
smoothed spikes) against time. Left: responses of neurons from the default reservoir. Right:
responses of neurons from the tuned reservoir.

We see that there are only two types of neuron activities in the default reservoir, whose
dynamics are visualized in the left panel of Figure 3.1. These two types of activities are (i) the
ON-neurons fired at the time 0.5 seconds and (ii) the OFF-neurons fired at the time 1.5 second.
On the other hand, the neuron activities produced by the tuned reservoir as shown in the right

20

panel of Figure 3.1 are much more versatile. The highly versatile neuron responses produced
by the tuned reservoir are usually favored for tasks such as regression and pattern classification.
Intuitively, diverse neuron responses are more linearly separable. The versatility of reservoir
responses exhibited by the tuned reservoir is also what one expects when conducting a similar
Pulse experiment on a digital computer (c.f. [Enel, 2014, Figure 3.5 C]).

3.2.3 The Pulse-Chirp experiment
To further test the short-term memory of the default and tuned reservoirs, we conducted a
Pulse-Chirp experiment similar to the one used in [He et al., 2019], whose presentation
we follow here. The goal of this regression task is to learn an input-output map, where the input
is a sequence of pulses with short widths separated by long periods of silence; the output is a
chirp signal, whose oscillation frequencies are adapting over time. Since the values of the target
chirp signal depend on the past values, the input-output map can only be successfully learned if
the reservoir responses preserve some information about the input history. Three repetitions of
such pulses (green vertical bars) and their corresponding 3 repetitions of target chirp signals (red
curve) are illustrated in Figure 3.2.

0 2 4 6 8 10
Time (sec)

−2

−1

0

1

2

3
Target

Input

Figure 3.2: Visualization of three repetitions of input pulses and their target chirp signals. The
pipeline of the Pulse-Chirp experiment is to (i) drive a reservoir with the input spike train
(green vertical bars) and (ii) linearly map reservoir responses to the target chirp signal (red dashed
line). For the linear map to work, the reservoir responses need to attain a certain length of
memory.

In our experiment, the lasting time for each pulse block is 0.5 seconds and the gap between
two pulse blocks is 2.85 seconds1 We repeated this input pattern for 30 times, resulting an input

1We use this peculiar “2.85 seconds” due to a technical issue we encountered for this experiment. As Dynap-se
disallows large gaps between two consecutive spikes, to introduce long silence time for this experiment, we employ

21

signal for Dynapse that lasts for 30× 3.35 = 100.5 seconds. After 30 repetitions of pulses were
sent, the responses of default and tuned reservoir neurons were collected. The collected spike
trains were then smoothed with an exponential-decay kernel. Figure 3.3 shows the responses
of default and tuned reservoir when driven by the input spikes. Similar to what we have seen
in Figure 3.1, we observe that the reservoir responses from the tuned reservoir (right panel of
Figure 3.3) is much more diverse than those from the default reservoir (left panel of Figure 3.3)
when driven by the sequence of pulses.

0.00 3.35 7.00 10.50
Time (sec)

0

20

S
m

o
ot

he
d

sp
ik

es

Default Reservoir

0.00 3.35 7.00 10.50
Time (sec)

0

50

100

Tuned Reservoir

Figure 3.3: Visualization of the reservoir responses of a sequence of short pulses (0.5 seconds)
gapped by long periods of silence (3 seconds). The sequence of pulses is visually illustrated with
green vertical bars. For each of the default and tuned reservoir, we randomly choose 100 neurons
and plot their neuronal responses (exponentially smoothed spikes) against time. Left: responses
of the default reservoir. Right: responses of the tuned reservoir.

So far, the experiment is similar to what we have done in the previously introduced Pulse
experiment. Different from the Pulse experiment, however, we carried out a regression for this
experiment, where the argument of the regression is the reservoir responses driven by these 30
repetitions of pulses and the target is 30 repetitions of chirp signals, whose oscillating frequencies
vary with respect to time. To do so, we split the harvested reservoir responses into a training
dataset and a testing dataset. The training dataset contains reservoir responses corresponding
to the first 24 repetitions of input pulses and the test dataset contains the rest of the responses.
A ridge regression was performed to map the reservoir responses from the training dataset to
its corresponding target. We then submitted the training and testing reservoir responses for the
same linear transformation, which is specified by ridge regression coefficients estimated using
the training data. A portion of the training results and testing results (10 seconds each) for both
reservoirs are shown in Figure 3.4.

a work-a-round solution: during the silent period, we send some “pseudo spikes” to on-chip neurons that are not
used throughout the experiment. The list of “pseudo spikes” was converted from a linearly increasing continuous
signal. Although this continuous signal lasts for 3 seconds, the spike train converted from it happens to last 2.85
seconds due to thresholding effect of the analog-to-spike conversion mechanism.

22

−2

0

2

Train MSE: 0.41

Default Reservoir

Train MSE: 0.18

Tuned Reservoir

0 5 10
Time (sec)

−2

0

2

Test MSE: 0.48

0 5 10
Time (sec)

Test MSE: 0.26

Figure 3.4: Training and testing results of the Pulse-Chirp regression task using the default
and the tuned reservoir. Figures in the first column are training (first row) and testing (second
row) results of a default reservoir; in a similar layout, figures in the second column are training
and testing results of a tuned reservoir. The input sequences of spikes are illustrated with Green
vertical bars; the target chirp signal is shown in red, and the predictions of the target chirp signal
(linearly read out from reservoir) are in blue. Numbers inset are the mean square errors (MSEs)
for training or testing datasets.

By comparing the left and right column of Figure 3.4, we see that the linear readout applied
to the default reservoir neuron responses failed to replicate the time-adapting oscillation behavior
of the target chirp signal (left panel), whereas the tuned reservoir solved the same task with much
lower mean square error (right panel). This indicates that the memory length possessed by the
tuned reservoir favorably outperforms the default one.

3.2.4 The Ramp + Sine experiment
In this experiment, we aim to compare the performances of default and tuned reservoirs under a
classification task. Our goal is to classify the temporal signal Ramp+Sine and Sine, which is
depicted in Figure 3.5. These two patterns are specifically designed such that the second half of
the Ramp + Sine signal is the same as the second half of Sine signal. To correctly distinguish
these patterns, the spiking neural network needs to maintain its memory when the temporal
input proceeds into the second half of the patterns. To start the experiment, we converted the

23

continuous ramp or sine signals into spike train as the input data for Dynap-se. The resulting
input spike data is shown in the second row of Figure 3.5, where the spikes in green are assumed
to be generated by an excitatory neuron and the spikes in red are assumed to be generated by an
inhibitory neuron.

0 1 2
Time (sec)

−1

0

1
Ramp + Sine

0 1 2
Time (sec)

Sine

Figure 3.5: The Ramp + Sine and Sine signals and their respective converted input spike
trains. The green vertical bars indicate the spikes which are assumed to be generated by an
excitatory input neuron and the red vertical bar indicate the spikes which are assumed to be
generated by an inhibitory input neuron. Left panel: the converted spike train from the Ramp +
Sine signal. Right panel: the converted spike train from the Sine.

In Figure 3.5, each signal lasts for 2 seconds, and so do their corresponding spike trains.
When performing the experiment, we sent 5 repetitions of each pattern into the Dynap-se, so
that a single experiment lasts for 2 × 5 × 2 = 20 seconds. For each pattern, we used the first
two segments for the washout purpose and we only collected the responding spikes starting from
the 3rd repetition of each pattern. We repeated the above process twice, once using the default
reservoir and once using the tuned reservoir, to harvest their respective reservoir responses. We
have appended the neural responses of the default and tuned reservoir driven by the Ramp +
Sine pattern to the Figure A.1 in the Appendix.

With the collected spikes from the reservoir, we performed spike data post-processing with
an exponential-decay kernel as we have done before in the regression task. Next, we splitted the
harvested reservoir responses into a training dataset and a testing dataset. The training dataset
contains reservoir responses corresponding to two repetitions of each input pattern and the testing
dataset consists of the rest of the reservoir responses. With the training data, we performed a ridge
regression to extract the features of two patterns. The input argument for the ridge regression is
the training dataset of the smoothed spike trains. The regression target is a matrix whose columns
are one-hot encoded indication of the signal, where the column vector [1, 0]> is the target for
Ramp+Sine pattern and [0, 1]> is the target for Sine pattern. Ridge regression coefficients are
calculated based on the training dataset and its target. For prediction, we linearly transformed the
training and testing reservoir responses using the learned coefficients. In Figure 3.6 we display
the classification results for the signal.

24

0

1

Train accuracy: 87.25%

Default Reservoir

Train accuracy: 98.25%

Tuned Reservoir

0 2 4 6 8
Time (sec)

0

1

Test accuracy: 85.25%

0 2 4 6 8
Time (sec)

Test accuracy: 92.5%

Figure 3.6: Training and testing results of the Sine-Ramp classification task using the default
and the tuned reservoir. Figures in the first column are training (first row) and testing (second
row) results of a default reservoir; in a similar layout, figures in the second column are training
and testing results of a tuned reservoir. The thick red line and the thick green line at the y-axis
1 or 0 represent the regression targets for Ramp+Sine and Sine, respectively. The orange
dots represent the predicted score for Ramp+Sine, and the green dots represent the predicted
score for Sine. Numbers inset are predicted accuracies for training or testing datasets, where
the accuracy is defined as the ratio of the number of corrected predicted bins (each bin lasts for
0.01 seconds).

By comparing the left and right panel of Figure 3.6, we see that the input signals processed
by the tuned reservoir (right panel) achieved much better classification performances than those
processed by the untuned reservoir (left panel).

25

26

Chapter 4

Slowing down Neuronal Dynamics by
Modifying the Reservoir Topology

In Chapter 3 we introduced heuristic techniques which slow down neural dynamics by modifying
properties of individual neurons. Instead of working on the single neuron level, we can also di-
rectly modify the global properties of a population of neurons. In this chapter, we introduce such
a global method named Reservoir Transfer. The method maps the desired dynamic properties of
a RNN whose dynamics is well-tuned on a digital computer to an on-chip spiking RNN.

A version of this chapter has been published as [He et al., 2019]. T. Liu contributed to
the paper as the second author by (i) creating a dataset for the purpose of training the on-chip
reservoir (to be discussed in Section 4.2 of this thesis) and (ii) using the on-chip reservoir to carry
out an ECG heartbeat abnormality experiment (to be discussed in Section 4.3). In the following
section, we present the Reservoir Transfer method sometimes using the wording of [He et al.,
2019].

4.1 Reservoir Transfer
The idea of the Reservoir Transfer method is based on the insight that the dynamics of a popu-
lation of neurons can be slower than those of individual neurons. For artificial recurrent neural
networks on a conventional computer, slow dynamics can be attained by properly choosing the
global network parameters, e.g., spectral radius of the recurrent connectivity matrix. However,
setting these parameters on Dynap-se based recurrent neural network is impractical due to its low
numerical precision. To address this issue, He et al. [2019] proposed to “transfer” the dynamic
properties of a well-performing RNN of artificial neurons (the “teacher network”) to on-chip
RNNs of leaky integrate-and-fire neurons (the “student network’). In this section, we introduce
the teacher network, the student network, and the transfer mechanism.

4.1.1 The teacher network
We first define a teacher network operating on a conventional computer, whose dynamics we
wish to “mirror” to a student network. The teacher network we use is an Echo State Network

27

with leaky integrator neurons [Jaeger, 2001]. When driven by a sequence ofm-dimensional input
signal u(t) at the time t, the evolution of the N -dimensional continuous-time state vector x(t) of
the network is given by

ẋ(t) = −λxx(t) + tanh(Winu(t) + Wx(t)), (4.1)

where λx is the leaking rate, Win ∈ RN×m and W ∈ RN×N are input and recurrent weights. In a
reservoir computing paradigm, the input weight matrix Win and recurrent weight matrix W are
randomly generated according to some global parameters such as the scaling factor of Win and
the spectral radius of W [Lukoševičius, 2012].

4.1.2 The student network
We now present the student Spiking Neural Network (SNN), which is the RNN of integrate-and-
fire (LIF) neurons introduced in Equation 1.10 of Section 1.2.2. Note that this student network
is slightly different from the one used in the original reservoir transfer paper [He et al., 2019]
in that the time constants are placed at different locations. Since the reservoir transfer method
will not be influenced by these changes, here we use the RNN with LIF neurons introduced in
Equation 1.10 for consistency.

Recall from Equation 1.10 that, when driven by an m-dimensional input signal u(t) at the
time t, the dynamics of a recurrent neural network of LIF neurons can be described by

τvv̇ = −v(t) + Ŵinu(t) + Ŵr(t) + I0 − θs(t),
τrṙ = −r(t) + s(t),

(4.2)

where v, s, and r are N -dimensional vectors whose i-th entries are denoted by vi, si, and ri,
respectively: vi is the membrane potential of the i-th neuron, si(t) =

∑
tif
δ(t − tif) is the

neuron’s output spike train with spike times tif together with a Dirac delta function δ(·), and
ri is the exponentially decaying synaptic currents triggered by si; I0 is a vector whose entries
are all I0, a constant current set near or at the rheobase (threshold to spiking) value [Nicola and
Clopath, 2017]; the matrices Ŵin ∈ RN×m and Ŵ ∈ RN×N are input weights and recurrent
weights of the student SNN. Note that the teacher network and the student network have the
same number of neurons.

4.1.3 Transfer dynamics of the teacher network to the student network
Since the reservoir dimension N are usually much higher than the input signal dimension m,
the state vectors x(t) of the teacher ESN in Equation 4.1 can be seen as high-dimensional tem-
poral features of the input signal u(t). To transfer the dynamic properties of the teacher ESN
to the student SNN, we inject these features x(t) of the teacher ESN element-wisely into the
corresponding student SNN, replacing the recurrent inputs Ŵr(t) in Equation 4.2. The resulting
dynamics of the SNN can be described by

τvv̇x = −vx(t) + Ŵinu(t) + x(t) + I0 − θsx(t),
τrṙx = −rx(t) + sx(t).

(4.3)

28

In Equation 4.3, the dynamics of the student SNN are sustained with the help of x(t). Ideally,
however, we would like the same dynamics vx(t) of the student SNN to be sustained without
manually injecting those x(t). To this end, we would like to choose a Ŵ, such that when both
networks are driven by the same input signal u(t), the dynamics of two networks are similar in
the sense that Ŵrx(t) ≈ x(t) for all t. To estimate such Ŵ, however, it is practically infeasible
to take all kinds of input signal u(t) and all continuous-valued time t into account. For this
reason, we resorted to a more modest goal: we fixed u(t) to be a white noise signal and use it to
drive the teacher and student networks. We then compute Ŵ by letting

Ŵ := argmin
W̃

∑
tk

‖W̃rx(tk)− x(tk)‖22, (4.4)

where tk are some discrete time samples and rx and x are those reservoir responses when driven
by the fixed white noise signal ut. The Ŵ in Equation 4.4 can be solved via a linear regression.
The solved Ŵ can then be used as a reservoir in the student SNN.

We note that the reservoir transfer method is not limited to the choice of neuron model used
in the student spiking neural network. In Equation 4.2 we used RNN of LIF neurons for the
convenience of presentation. Other types of neuron models can be straightforwardly used in
the reservoir transfer paradigm, too. Indeed, the neurons equipped on Dynap-se are based on the
AdEx model [Brette and Gerstner, 2005], which is a generalization of the leaky integrate-and-fire
model.

4.2 Training on-chip reservoir
We employed the reservoir transfer method to train a reservoir of 768 neurons (3 cores) on
Dynap-se. The training procedure is outlined as follows. We first created a leaky ESN of equal
size in the Brian2 simulator [Goodman and Brette, 2009] as a teacher reservoir. We sent a white
noise input signal u(t) to the teacher ESN to harvest its reservoir responses. These responses are
then converted to spike trains and are sent to the student network on Dynap-se, whose parameters
have already been tuned according to the heuristic techniques discussed in Chapter 3 in advance.
After the output spike trains from the hardware neurons are recorded, we smoothed both the input
and output spike trains by an exponential decay kernel to get x(t) and r(t), respectively. Instead
of using the standard linear regression to solve Equation 4.4, we employed a ternarized linear
regression [Zhu et al., 2017] to compute the weight matrix Ŵternary of ternary precision. That
is, the values of the matrix Ŵternary are either -1, 0, or 1, corresponding to inhibitory synapses,
no connection, and excitatory synapses. Ternarized linear regression was used here because
our Dynap-se hardware does not support full-precision recurrent connectivities. The learned
ternary connectivity matrix was then written into a .txt file and loaded into Dynap-se as the
trained reservoir. When writing the learned topology into Dynap-se readable format, we assumed
that all synapses are slow synapses according to the recommendation of Heuristic Technique 2
introduced in Chapter 3.

One advantage of reservoir transfer method for Dynap-se hardware is that the method does
not require exact values of the network state variables such as membrane potentials and currents,

29

which are unobservable and varying across individual neurons on Dynap-se. The neurons do not
have to share the same parameter value as long as their collective response to the input current
x(t) contains enough information to linearly decode x(t). Moreover, learning is needed only
once using a white noise signal, afterward, the connection weights can stay fixed. Hence no
online adaptation on hardware is needed.

We would like to briefly remark the similarities and differences of the reservoir transfer
method and the pre-trained DNN method introduced in section 1.3.1. Both methods map ar-
tificial neural networks to their counterparts on neuromorphic devices. However, the objectives
of reservoir transfer method and the pre-trained DNN are quite different. The pre-trained DNN
approach first learns parameters based on a particular task (e.g., image classification) and maps
the learned parameters to neuromorphic hardware such that the on-chip neural networks can
solve the same task. The reservoir method, however, is not optimized with respect to a particular
task. Instead, the learning here aims to map characteristics of slow dynamics of the teacher ESN
to the student SNN. On can say that the learned connection weights resulted from the reservoir
transfer method are not task-customized but timescale-customized.

4.3 ECG monitoring experiment

Figure 4.1: Two patterns of heartbeats in an ECG signal. Left panel: a normal heartbeat. Right
panel: a PVC heart beat.

To verify that the transfer learning method yields a functional physical spiking reservoir,
we conducted ECG signal classification experiments using the learned reservoir on Dynap-se.
The experiment aims to detect Premature Ventricular Contractions (PVCs), which are abnormal
heartbeats initiated by the heart ventricles. Figure 4.1 shows a normal heartbeat (left panel) and
a PVC heartbeat (right panel). More concretely, we formulated the PVC detection task as a

30

supervised temporal classification problem which demands a binary output signal y(n) for each
heartbeat indexed by n:

y(n) =

{
1 if the n-th heartbeat is a PVC,
0 otherwise.

(4.5)

We used the MIT-BIH ECG arrhythmia database Goldberger et al. [2000] in this experiment.
The database provides 48 half-hour excerpts of two-channel ambulatory ECG recording files,
obtained from 47 different patients. The recordings were digitized with a sampling frequency of
360 Hz and acquired with 11-bit resolution over a 10mV range. Each record was annotated by
two or more cardiologists independently, both in timing information and beat classification. In
this work, we used recordings from file #106, #119, #200, #201, #203, #223, and #233. We aim
to train a classifier for each subject, such that the trained classifier can distinguish the normal
and abnormal heartbeats of the corresponding subject. To this end, we used the annotation file
of each subject to train and evaluate the classifier. More concretely, we used an interval of 10
minutes of the recording signal from each subject for training and the next 5 minutes for testing.
We carried out numerical experiments using the following routine.

1. ECG pre-processing: we removed the baseline drift from an ECG signal by applying a
high-pass Butterworth filter and then normalized the signal into the numerical range [0,1].

2. Signal-to-spike conversion: we placed a spike at a time index if the increase/decrease of
the ECG signal relative to its value at the previous spike time surpassed a threshold of
numerical value 0.1.

3. Reservoir response harvesting: we sent ECG-converted spike trains into Dynap-se to har-
vest the reservoir responses, which were in the form of spike trains.

4. Spike-to-signal conversion: on a digital computer, we smoothed the spike trains collected
from the physical reservoir to continuous-valued time-series by an exponential decay ker-
nel with a decay time constant, which is a hyperparameter for each individual subject.

5. Classifier training: the training of the classifier amounted to solving a linear regression
problem, where the input for linear regression was the smoothed reservoir responses and
the target output was a {0, 1}-valued binary signal indicating the correct labels of heart-
beats. To derive a stable linear regression solution, we used a ridge regression in practice.
Dividing the reservoir responses and target signal into five segments, we used a five-fold
cross-validation scheme to optimize the learning parameters, which include a regulariza-
tion coefficient for ridge regression and a binarization threshold to round the predicted
labels to 0 and 1.

6. Test result evaluation: with a testing ECG time-series, we repeated the above procedure to
procure its smoothed reservoir responses and then readout the predicted labels with learned
weights. We used the following familiar metrics to evaluate the binary classification per-
formance: accuracy, sensitivity, precision, and F1-score. Concretely, letting TP denote the
number of true positive predictions (abnormal heartbeats correctly identified as abnormal),
FP denote the number of false positive (normal heartbeats incorrectly identified as ab-
normal heartbeats), TP denote the number of true negative predictions (normal heartbeats
correctly identified as normal), and FN denote the number of false negative predictions

31

(abnormal heartbeats incorrectly identified as normal), the metrics accuracy, sensitivity,
precision, and F1-score are defined as follows: Accuracy = (TP + TN)/(TP + TN + FP +
FN), Sensitivity = TP/(TP + FN), Precision = TP/(TP + FP), F1-score = 2TP/(2TP + FP +
FN).

A comparison of classification accuracy on testing data between the low-precision spiking
reservoir and the digitally simulated, high-precision reservoir baseline is provided in Table 4.1.
The high-precision reservoir baseline is a standard ESN whose parameters set as leakage rate =
0.99, spectral radius= 0.9, and regression parameter = 1e-6.

Table 4.1: PVC detection results on testing data

Performance Metrics
subject number classifier Accuracy Sensitivity Precision F1

subject #106
Standard ESN 98.75 % 97.22 % 97.22 % 97.22 %

Dynap-se reservoir 91.30 % 88.89 % 76.19 % 82.05 %

subject #119
Standard ESN 99.70 % 100 % 99.10 % 99.55 %

Dynap-se reservoir 97.87 % 100 % 94.07 % 96.94 %

subject #200
Standard ESN 99.07 % 98.24 % 99.40 % 98.82 %

Dynap-se reservoir 95.80 % 93.53 % 95.78 % 94.64 %

subject #201
Standard ESN 99.24 % 100 % 97.18 % 98.57 %

Dynap-se reservoir 97.74 % 95.71 % 95.71 % 95.71 %

subject #203
Standard ESN 98.14 % 100 % 90.32 % 94.92 %

Dynap-se reservoir 89.28 % 79.38 % 70.64 % 74.76 %

subject #223
Standard ESN 99.07 % 99.05 % 98.11 % 98.58 %

Dynap-se reservoir 90.53 % 76.15 % 84.69 % 80.19%

subject #233
Standard ESN 99.78 % 100 % 99.21 % 99.60 %

Dynap-se reservoir 97.46 % 93.01 % 97.79 % 95.34 %

From Table 4.1, we see that the computational performance of the on-chip neural networks
favorably approximate that of ESNs on conventional computers.

32

Chapter 5

Conclusion

In this thesis, we reported our attempts to realize slow reservoir dynamics on a type of ana-
log neuromorphic hardware named Dynap-se. We empirically demonstrated that by harnessing
slow dynamics, spiking neural networks deployed on analog neuromorphic hardware can gain
non-trivial performance boosts for real-time signal processing tasks. We now summarize the
contributions of this thesis.

In Chapter 2, we outlined a general pipeline for conducting experiments with Dynap-se board.
This pipeline can be used as a primer for practitioners who wish to conduct numerical experi-
ments on Dynap-se. In Chapter 3 we proposed two heuristics methods for slowing down the
dynamics of on-chip neural networks. Since these two techniques operate locally at the neu-
ron level, they can be conveniently applied to Dynap-se for different tasks. In Chapter 4 we
introduced the reservoir transfer paradigm, which “mirrors” well-tuned dynamics of an artifi-
cial neural network to an on-chip spiking neural network. For the reservoir transfer paradigm,
the main contribution of the thesis was on the experiment side, for which we have tested the
effectiveness of the transferred reservoir using ECG datasets collected from 7 subjects.

This thesis has a few limitations. An important one is that we need more thorough investi-
gations on the separate roles played by the parameter tuning heuristics and the reservoir transfer
method. As pointed out in Chapter 4, when training the on-chip reservoir (Section 4.2) and when
conducting the ECG experiments (Section 4.3), we used heuristically tuned parameters. That is,
the reservoir transfer pipeline operated with the help of the tuned parameters. By doing so, two
important issues remain unclear: (i) Will reservoir transfer work using the untuned set of param-
eters? (ii) How well can the tuned (yet untrained) reservoir perform under the ECG experiments?
To address these questions, more controlled experiments are needed. A second limitation of this
thesis is that the experiments we have reported in Chapter 3 and Chapter 4 are based on on-
chip reservoir responses driven by single trials of input spike trains. Recall that, for example,
when conducting the Pulse-Chirp experiment in Subsection 3.2.2, the training and testing
data were two separate segments of reservoir responses driven by a single trial of input spike
train. This approach, however, fails to take trial-to-trial variability of on-chip neural networks.
Due to the stochasticity of analog circuits, regression weights estimated from reservoir responses
driven by one trial of input spikes may perform well upon in-trial reservoir responses yet fail to
generalize well to out-of-trial reservoir responses.

This thesis calls for a deeper investigation of the effects of timescales in spiking neural net-

33

works. In the future, we expect more algorithms that bring slow dynamics to spiking neural
networks on analog neuromorphic hardware. Concretely, for future work, it will be worthwhile
to formally validate/falsify the two heuristic techniques proposed in Chapter 3 by delving deep
into the non-linear dynamics of DPI circuits. A second avenue for future research is to extend
the existing reservoir transfer method. As pointed out in He et al. [2019], instead of using a ran-
domly created ESN for reservoir transfer, we plan to explore the effects of transferring trained
recurrent neural networks on neuromorphic hardware.

34

35

Appendix A

Parameters Values

A.1 Default Parameters

Parameter Names Coarse Values Fine Values

Neuron Parameters

IF AHTAU N 7 35
IF AHTHR N 7 1
IF AHW P 7 1
IF BUF P 3 80
IF CASC N 7 1
IF DC P 7 0
IF NMDA N 7 0
IF RFR N 4 60
IF TAU1 N 7 130
IF TAU2 N 0 100
IF THR N 7 130

Synapse Parameters

NPDPIE TAU F P 4 36
NPDPIE TAU S P 5 38
NPDPIE THR F P 2 200
NPDPIE THR S P 2 200
NPDPII TAU F P 5 41
NPDPII TAU S P 5 41
NPDPII THR F P 0 150
NPDPII THR S P 7 150
PS WEIGHT EXC F N 0 30
PS WEIGHT EXC S N 0 100
PS WEIGHT INH F N 0 100
PS WEIGHT INH S N 0 114
PULSE PWLK P 2 112
R2R P 4 85

Table A.1: The default parameters of Dynap-se. These parameters can be configured by pressing
“set default spiking biases” button on the GUI of Dynapse.

36

A.2 Tuned Parameters

Parameter Names Coarse Values Fine Values

Neuron Parameters

IF AHTAU N 7 35
IF AHTHR N 7 1
IF AHW P 7 1
IF BUF P 3 80
IF CASC N 7 1
IF DC P 7 0
IF NMDA N 7 0
IF RFR N 4 60
IF TAU1 N 7 130
IF TAU2 N 0 100
IF THR N 7 130

Synapse Parameters

NPDPIE TAU F P 7 0
NPDPIE TAU S P 5 38
NPDPIE THR F P 7 0
NPDPIE THR S P 2 200
NPDPII TAU F P 7 0
NPDPII TAU S P 5 41
NPDPII THR F P 7 0
NPDPII THR S P 7 150
PS WEIGHT EXC F N 0 30
PS WEIGHT EXC S N 0 100
PS WEIGHT INH F N 0 100
PS WEIGHT INH S N 0 114
PULSE PWLK P 2 112
R2R P 4 85

Table A.2: The tuned parameters of Dynap-se. Compared to the default parameters in Table A.1,
the modified ones are marked in red.

37

A.3 Reservoir responses in Ramp + Sine experiment

0 6 12
Time (sec)

0.0

2.5

5.0
S

m
o

ot
he

d
sp

ik
es

Default Reservoir

0 6 12
Time (sec)

0

10

20

Tuned Reservoir

Figure A.1: Visualization of the reservoir responses when driven by input signal from Ramp +
Sine experiment. For each of the default and tuned reservoir, we randomly choose 100 neurons
and plot their neuronal responses (exponentially smoothed spikes) against time. Left: responses
of the default reservoir. Right: responses of the tuned reservoir.

38

Bibliography

D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg, C. Case, J. Casper,
B. Catanzaro, Q¿ Cheng, G. Chen, J. Chen, J. Chen, Z. Chen, M. Chrzanowski, A. Coates,
G. Diamos, K. Ding, N. Du, E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao, C. Gong,
A. Hannun, T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley, L. Lin, J. Liu, Y. Liu,
W. Li, X. Li, D. Ma, S. Narang, A. Ng, S. Ozair, Y. Peng, R. Prenger, S. Qian, Z. Quan,
J. Raiman, V. Rao, S. Satheesh, D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang,
L. Tang, C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang, S. Wu, L. Wei, B. Xiao,
W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan, and Z. Zhu. Deep speech 2 : End-to-end
speech recognition in english and mandarin. In M. F. Balcan and K. Q. Weinberger, editors,
Proceedings of the 33rd International Conference on Machine Learning, volume 48 of Pro-
ceedings of Machine Learning Research, pages 173–182, New York, New York, USA, June
2016. PMLR.

A. G. Andreou and K. A. Boahen. Translinear circuits in subthreshold MOS. Analog Integrated
Circuits and Signal Processing, 9(2):141–166, March 1996.

J. Backus. Can programming be liberated from the von Neumann style? A functional style and
its algebra of programs. Communications of the ACM, 21(8):613–641, August 1978.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and
translate. In 3rd International Conference on Learning Representations (ICLR 2015), May
2015.

C. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass. Long short-term memory and
learning-to-learn in networks of spiking neurons. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems 31, pages 787–797. Curran Associates, Inc., 2018.

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J. Bussat, R. Alvarez-
Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen. Neurogrid: A mixed-analog-digital mul-
tichip system for large-scale neural simulations. Proceedings of the IEEE, 102(5):699–716,
May 2014.

K. Birmingham, V. Gradinaru, P. Anikeeva, W. M. Grill, V. Pikov, B. McLaughlin, P. J. Pasricha,
D. Weber, K. Ludwig, and K. Famm. Bioelectronic medicines: A research roadmap. Nature
Reviews Drug Discovery, 13(June):399–400, 2014.

S. Braun and S. Liu. Parameter uncertainty for end-to-end speech recognition. In ICASSP 2019
- 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

39

pages 5636–5640, May 2019.

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective descrip-
tion of neuronal activity. Journal of Neurophysiology, 94(5):3637–3642, 2005.

D. Briiderle, J. Bill, B. Kaplan, J. Kremkow, K. Meier, E. Müller, and J. Schemmel. Simulator-
like exploration of cortical network architectures with a mixed-signal VLSI system. In Pro-
ceedings of 2010 IEEE International Symposium on Circuits and Systems, pages 2784–8787,
May 2010.

R. Cattaneo. ECG signals classification using neuromorphic hardware. Master’s thesis, Politech-
nico Di Torino, 2018.

R. K. Cavin, P. Lugli, and V. V. Zhirnov. Science and engineering beyond Moore’s law. Pro-
ceedings of the IEEE, 100(Special Centennial Issue):1720–1749, May 2012.

E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri. Neuromorphic electronic circuits for build-
ing autonomous cognitive systems. Proceedings of the IEEE, 102(9):1367–1388, September
2014.

M. Davies, N. Srinivasa, T. Lin, G. Chinya, Y. Cao, S. Choday, G. Dimou, P. Joshi, N. Imam,
S. Jain, Y. Liao, C. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse,
G. Venkataramanan, Y. Weng, A. Wild, Y. Yang, and H. Wang. Loihi: A neuromorphic many-
core processor with on-chip learning. IEEE Micro, 38(01):82–99, January 2018.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of
ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of Solid-State
Circuits, 9(5):256–268, October 1974.

J. C. Eccles, P. Fatt, and K. Koketsu. Cholinergic and inhibitory synapses in a pathway from
motor-axon collaterals to motoneurones. The Journal of physiology, 126(3):524–562, Decem-
ber 1954.

C. Eliasmith and C. H. Anderson. Neural engineering: Computation, representation, and Dy-
namics in Neurobiological Systems. MIT press, 2004.

P. Enel. Dynamic representation in the prefrontal cortex: insights from comparing reservoir
computing and primate neurophysiology. PhD thesis, Icahn School of Medicine at Mount
Sinai, 2014.

S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha. Backpropagation
for energy-efficient neuromorphic computing. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems
28, pages 1117–1125. Curran Associates, Inc., 2015.

S. K. Esser, P. M. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J.
Berg, J. L. McKinstry, T. Melano, D. R. Barch, C. di Nolfo, P. Datta, A. Amir, B. Taba, M. D.
Flickner, and D. S Modha. Convolutional networks for fast, energy-efficient neuromorphic
computing. Proceedings of the National Academy of Sciences, 113(41):11441–11446, 2016.

S. Furber. Large-scale neuromorphic computing systems. Journal of Neural Engineering, 13(5):
051001, August 2016.

C. Gao, S. Braun, I. Kiselev, J. Anumula, T. Delbruck, and S. Liu. Real-time speech recognition

40

for iot purpose using a delta recurrent neural network accelerator. In 2019 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–5, May 2019.

W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski. Neuronal Dynamics: From Single Neurons
to Networks and Models of Cognition. Cambridge University Press, New York, NY, USA,
2014.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E.
Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and Phys-
ionet: Components of a new research resource for complex physiologic signals. Circulation,
101(23), June 2000.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

D. Goodman and R. Brette. The Brian simulator. Frontiers in Neuroscience, 3:26, 2009.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, June
2016.

X. He, T. Liu, F. Hadaeghi, and H. Jaeger. Reservoir transfer on analog neuromorphic
hardware. The 9th International IEEE EMBS Conference on Neural Engineering, March
2019. URL http://minds.jacobs-university.de/uploads/papers/3158_
Heetal19.pdf.

D. Huh and T. J. Sejnowski. Gradient descent for spiking neural networks. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 31, pages 1433–1443. Curran Associates, Inc., 2018.

G. Indiveri and S. Liu. Memory and information processing in neuromorphic systems. Proceed-
ings of the IEEE, 103(8):1379–1397, August 2015.

IniLabs. Dynap-se user guide, 2017. URL https://docs.google.com/document/
d/e/2PACX-1vQV36QRWsQl4ROfvRo7mbHb5_ZQ4Q1Qw64AkfdhuPEtIXYq1kf_
ZsD3-GZkYPKqrlkOiizCq-Jjt_kD/pub?embedded=true.

N. Izeboudjen, C. Larbes, and A. Farah. A new classification approach for neural networks
hardware: from standards chips to embedded systems on chip. Artificial Intelligence Review,
41(4):491–534, Apr 2014.

H. Jaeger, M. Lukoševičius, D. Popovici, and U. Siewert. Optimization and applications of echo
state networks with leaky-integrator neurons. Neural Networks, 20(3):335 – 352, 2007. Echo
State Networks and Liquid State Machines.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks
with an erratum note. Technical Report of German National Research Center for Information
Technology, 148(34):13, 2001.

X. Jin, M. Lujn, M. M. Khan, L. A. Plana, A. D. Rast, S. R. Welbourne, and S. B. Furber.
Algorithm for mapping multilayer BP networks onto the SpiNNaker neuromorphic hardware.
In 2010 Ninth International Symposium on Parallel and Distributed Computing, pages 9–16,
July 2010. doi: 10.1109/ISPDC.2010.10.

41

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://minds.jacobs-university.de/uploads/papers/3158_Heetal19.pdf
http://minds.jacobs-university.de/uploads/papers/3158_Heetal19.pdf
https://docs.google.com/document/d/e/2PACX-1vQV36QRWsQl4ROfvRo7mbHb5_ZQ4Q1Qw64AkfdhuPEtIXYq1kf_ZsD3-GZkYPKqrlkOiizCq-Jjt_kD/pub?embedded=true
https://docs.google.com/document/d/e/2PACX-1vQV36QRWsQl4ROfvRo7mbHb5_ZQ4Q1Qw64AkfdhuPEtIXYq1kf_ZsD3-GZkYPKqrlkOiizCq-Jjt_kD/pub?embedded=true
https://docs.google.com/document/d/e/2PACX-1vQV36QRWsQl4ROfvRo7mbHb5_ZQ4Q1Qw64AkfdhuPEtIXYq1kf_ZsD3-GZkYPKqrlkOiizCq-Jjt_kD/pub?embedded=true

M. Kaku. Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives
by the Year 2100. Anchor, 2012.

L. B. Kish. End of Moore’s law: thermal (noise) death of integration in micro and nano electron-
ics. Physics Letters A, 305:144–149, December 2002.

R. Kreiser, A. Renner, Y. Sandamirskaya, and P. Pienroj. Pose estimation and map formation
with spiking neural networks: towards neuromorphic SLAM. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2159–2166, October 2018.

L. Lapicque. Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une
polarisation. Journal de Physiologie et Pathologie General, 9:620–635, 1907.

C. Liu, G. Bellec, B. Vogginger, D. Kappel, J. Partzsch, F. Neumärker, S. Höppner, W. Maass,
S. B. Furber, R. Legenstein, and C. G. Mayr. Memory-efficient deep learning on a SpiNNaker
2 prototype. Frontiers in Neuroscience, 12:840, 2018.

S. Liu, T. Delbruck, J. Kramer, G. Indiveri, and R. Douglas. Analog VLSI: Circuits and Princi-
ples. MIT Press, Cambridge, MA, USA, 2002.

Tianlin Liu. Toward reservoir computing on neuromorphic microchips, 2018.
URL http://www.neuram3.eu/internal/paper-repository/
toward-reservoir-computing-on-neuromorphic-microchips.

M. Lukoševičius. A Practical Guide to Applying Echo State Networks, pages 659–686. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A new
framework for neural computation based on perturbations. Neural Computation, 14(11):2531–
2560, 2002.

C. Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636, 1990.

P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada, F. Akopyan, B. L. Jack-
son, N. Imam, C. Guo, Y. Nakamura, B. Brezzo, I. Vo, S. K. Esser, R. Appuswamy, B. Taba,
A. Amir, M. D. Flickner, W. P. Risk, R. Manohar, and D. S. Modha. A million spiking-neuron
integrated circuit with a scalable communication network and interface. Science, 345(6197):
668–673, 2014.

S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri. A scalable multicore architecture with hetero-
geneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs).
IEEE Transactions on Biomedical Circuits and Systems, pages 1–17, 2017.

A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R. Voelker, C. Eliasmith,
R. Manohar, and K. Boahen. Braindrop: A mixed-signal neuromorphic architecture with a
dynamical systems-based programming model. Proceedings of the IEEE, 107(1):144–164,
January 2019.

E. O. Neftci, H. Mostafa, and F. Zenke. Surrogate gradient learning in spiking neural networks,
2019. URL https://arxiv.org/abs/1901.09948.

E. J. Nestler, S. E. Hyman, and R. C. Malenka. Molecular Neuropharmacology: A Foundation for
Clinical Neuroscience, Second Edition. McGraw Hill professional. McGraw-Hill Education,
2008.

42

http://www.neuram3.eu/internal/paper-repository/toward-reservoir-computing-on-neuromorphic-microchips
http://www.neuram3.eu/internal/paper-repository/toward-reservoir-computing-on-neuromorphic-microchips
https://arxiv.org/abs/1901.09948

W. Nicola and C. Clopath. Supervised learning in spiking neural networks with FORCE training.
Nature Communications, 8(1):2208, 2017.

Q. Ning, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri. A
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and
128K synapses. Frontiers in Neuroscience, 9:141, 2015.

E. Painkras, L. A. Plana, J. Garside, S. Temple, S. Davidson, J. Pepper, D. Clark, C. Patterson,
and S. Furber. SpiNNaker: A multi-core system-on-chip for massively-parallel neural net
simulation. In Proceedings of the IEEE 2012 Custom Integrated Circuits Conference, pages
1–4, September 2012.

T. Pfeil. Exploring the potential of brain-inspired computing. PhD thesis, University of Heidel-
berg, 2015.

N. Qiao and G. Indiveri. Analog circuits for mixed-signal neuromorphic computing architec-
tures in 28 nm FD-SOI technology. In 2017 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), pages 1–4, October 2017.

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and G. Indiveri. A
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and
128K synapses. Frontiers in Neuroscience, 9:141, 2015.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

J. Schemmel, D. Bruderle, K. Meier, and B. Ostendorf. Modeling synaptic plasticity within net-
works of highly accelerated I&F neurons. In 2007 IEEE International Symposium on Circuits
and Systems, pages 3367–3370, May 2007.

J. Schemmel, A. Grübl, S. Hartmann, A. Kononov, C. Mayr, K. Meier, S. Millner, J. Partzsch,
S. Schiefer, S. Scholze, R. Schüffny, and M. Schwartz. Live demonstration: A scaled-down
version of the brainScaleS wafer-scale neuromorphic system. In 2012 IEEE International
Symposium on Circuits and Systems, pages 702–702, May 2012.

S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Güttler, A. Hartel, S. Hartmann, D. Hus-
mann, K. Husmann, S. Jeltsch, V. Karasenko, M. Kleider, C. Koke, A. Kononov, C. Mauch,
E. Müller, P. Müller, J. Partzsch, M. A. Petrovici, S. Schiefer, S. Scholze, V. Thanasoulis,
B. Vogginger, R. Legenstein, W. Maass, C. Mayr, R. Schüffny, J. Schemmel, and K. Meier.
Neuromorphic hardware in the loop: Training a deep spiking network on the brainScaleS
wafer-scale system. In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2227–2234, May 2017.

B. Schrauwen and J. Van Campenhout. BSA, a fast and accurate spike train encoding scheme.
In Proceedings of the International Joint Conference on Neural Networks, 2003., volume 4,
pages 2825–2830, July 2003.

S. Shaikh, R. So, T. Sibindi, C. Libedinsky, and A. Basu. Real-time closed loop neural decoding
on a neuromorphic chip. The 9th International IEEE EMBS Conference on Neural Engineer-
ing, March 2019.

S. B. Shrestha and G. Orchard. SLAYER: Spike layer error reassignment in time. In S. Bengio,

43

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 1412–1421. Curran Associates, Inc., 2018.

E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S. Liu, and S. Furber. Scalable energy-efficient,
low-latency implementations of trained spiking deep belief networks on SpiNNaker. In 2015
International Joint Conference on Neural Networks (IJCNN), pages 1–8, July 2015.

J. von Neumann. First draft of a report on the EDVAC, 1945. URL https://ieeexplore.
ieee.org/document/238389.

M. Waldrop. The chips are down for Moore’s law. Nature News,
530:144, February 2016. URL https://www.nature.com/news/
the-chips-are-down-for-moore-s-law-1.19338.

A. Zbrzeski, Y. Bornat, B. Hillen, R. Siu, J. Abbas, R. Jung, and S. Renaud. Bio-inspired con-
troller on an fpga applied to closed-loop diaphragmatic stimulation. Frontiers in Neuroscience,
10:275, 2016.

F. Zenke and S. Ganguli. Superspike: Supervised learning in multilayer spiking neural networks.
Neural Computation, 30(6):1514–1541, 2018.

C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained ternary quantization. In 5th International
Conference on Learning Representations, (ICLR 2017), Toulon, France, April 2017.

44

https://ieeexplore.ieee.org/document/238389
https://ieeexplore.ieee.org/document/238389
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338
https://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

	Introduction
	Neuromorphic computing
	Recurrent network of spiking neurons
	LIF neurons
	Recurrent network of LIF neurons
	Supervised training for RNN of LIF neurons

	Learning algorithms for neuromorphic computation
	Deep learning for neuromorphic hardware
	Reservoir computing for neuromorphic hardware

	Thesis overview
	Used sources
	Research reproducibility

	Dynap-se Neuromorphic Microchips
	Dynap-se board
	On-chip neurons
	On-chip neural networks

	Conducting numerical experiments on Dynap-se
	A general routine for performing numerical experiments
	Practical implementation of the routine

	Slowing down Neuronal Dynamics by Modifying Properties of Individual Neurons
	Heuristics of parameter selection
	Numerical experiments
	Experiment setup: baseline reservoir and tuned reservoir
	The Pulse experiment
	The Pulse-Chirp experiment
	The Ramp + Sine experiment

	Slowing down Neuronal Dynamics by Modifying the Reservoir Topology
	Reservoir Transfer
	The teacher network
	The student network
	Transfer dynamics of the teacher network to the student network

	Training on-chip reservoir
	ECG monitoring experiment

	Conclusion
	Parameters Values
	Default Parameters
	Tuned Parameters
	Reservoir responses in Ramp + Sine experiment

